Atjaunināt sīkdatņu piekrišanu

E-grāmata: Materials for Biofuels [World Scientific e-book]

Edited by (Georgia Inst Of Technology, Usa)
  • Formāts: 356 pages
  • Sērija : Materials and Energy 4
  • Izdošanas datums: 21-Mar-2014
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814513289
  • World Scientific e-book
  • Cena: 138,85 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 356 pages
  • Sērija : Materials and Energy 4
  • Izdošanas datums: 21-Mar-2014
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814513289
This invaluable book provides a broad and detailed introduction to the fascinating and hot research subject of transformation of biomass-related materials to biofuels. Biofuel production can be categorized into a variety of novel conversion and refinery development technologies. However, biomass recalcitrance is the biggest challenge blocking the way in biofuel conversion. This book provides an enlightening view of the frontiers in leading pretreatments, downstream enzymatic hydrolysis, fermentation technology, corrosion issues in biofuel and merging biofuels technology into a pulp mill to pave the way for future large-scale biofuel production.
Perface v
Chapter 1 What is Biomass
1(26)
Fang Huang
1 Introduction
1(2)
2 Drivers for Biomass
3(2)
3 Biomass Types
5(1)
4 Understanding Lignocellulosic Biomass
6(21)
4.1 Composition of lignocellulosic biomass
6(1)
4.2 Physical and chemical characteristics of lignocellulosic biomass
7(1)
4.2.1 Cellulose
8(4)
4.2.2 Hemicellulose
12(1)
4.2.3 Lignin
13(6)
4.2.4 Ash content and inorganic element profiles
19(1)
4.2.5 Extractive content
19(1)
4.2.6 Elemental composition
20(2)
4.2.7 Heating values
22(1)
Acknowledgments
22(1)
References
22(5)
Chapter 2 Biomass Recalcitrance and the Contributing Cell Wall Factors
27(18)
Marcus Foston
1 Introduction
27(3)
2 Structural Features
30(2)
3 Molecular Features
32(7)
3.1 Cellulose crystallinity
32(3)
3.2 Cellulose degree of polymerization
35(2)
3.3 Cellulose accessibility
37(2)
4 Chemical Features
39(6)
4.1 Lignin
39(2)
4.2 Hemicellulose
41(1)
4.3 Pectin
41(1)
4.4 Acetyl groups
42(1)
References
43(2)
Chapter 3 Reduction of Biomass Recalcitrance via Water/Acid Pretreatments
45(30)
Fan Hu
1 Introduction
45(2)
2 Technical Process of DAP and HTP
47(3)
2.1 Dilute acid pretreatment
47(2)
2.2 Hydrothermal pretreatment
49(1)
3 Hemicelluloses Hydrolysis and Porosity during DAP and HTP
50(6)
4 Cellulose Crystallinity and Degree of Polymerization during DAP and HTP
56(4)
5 Lignin Behavior during DAP and HTP
60(4)
6 Pseudo-lignin Formation
64(3)
7 Conclusions and Outlook
67(8)
Acknowledgments
67(1)
References
67(8)
Chapter 4 Reduction of Biomass Recalcitrance via Organosolv Pretreatments
75(20)
Xianzhi Meng
1 Introduction
75(2)
2 Overview of Organosolv Pretreatment
77(1)
3 Mechanism of Organosolv Pretreatment for Reduction of Recalcitrance
78(3)
4 Cellulose Behavior during Organosolv Pretreatment
81(3)
5 Lignin Behavior during Organosolv Pretreatment
84(6)
6 Conclusions and Outlook
90(5)
Acknowledgments
91(1)
References
91(4)
Chapter 5 Reduction of Biomass Recalcitrance via Ionic Liquid Pretreatments
95(32)
Alistair W. T. King
Haibo Xie
Juha Fiskari
Ilkka Kilpelainen
1 Introduction
96(4)
1.1 What are ionic liquids?
96(2)
1.2 What biofuels are possible from IL pretreatments
98(2)
2 Biomass Solubility
100(8)
2.1 Solubility and stability of wood and wood biopolymers in ILs
100(5)
2.2 Solubility of wood in IL-based organic electrolytes
105(3)
3 IL-Aided Fractionation as a Pretreatment for Saccharification
108(4)
4 Tolerance of Enzymes/Microorganisms to IL Systems
112(3)
5 Ionic Liquid Recyclability and Recycling Strategies
115(3)
6 Challenges and Future Outlook
118(9)
References
120(7)
Chapter 6 Enzymatic Deconstruction of Lignocellulose to Fermentable Sugars
127(28)
Qining Sun
1 Introduction
127(2)
2 Enzymatic System
129(5)
2.1 Cellulase enzyme system
130(2)
2.2 Hemicellulase enzyme system
132(1)
2.3 Lignin modifying enzymes
133(1)
2.4 Pectin degrading enzymes
133(1)
3 Cellulose Enzymatic Saccharification
134(7)
3.1 Enzyme behavior in hydrolysis
134(1)
3.2 Cellulase adsorption and desorption
135(4)
3.3 Carbohydrate-bonding modules
139(1)
3.4 Trichoderma reesei system
140(1)
4 Factors Influencing Lignocelluloses Enzymatic Hydrolysis
141(3)
4.1 Experimental conditions involved factors
141(1)
4.2 Substrate features involved factors
142(1)
4.3 Enzyme related factors
143(1)
5 Strategies to Enhance Enzymatic Hydrolysis
144(2)
5.1 Synergistic effects on enzymatic hydrolysis
144(1)
5.2 Additives and surfactants
145(1)
6 Conclusions and Outlook
146(9)
Acknowledgments
146(1)
References
146(9)
Chapter 7 Fermentation to Bioethanol/Biobutanol
155(36)
Tao Ma
Matyas Kosa; Qining Sun
1 Introduction
155(3)
2 Biochemical Fermenting Microorganisms and Developments
158(13)
2.1 Yeast-Saccharomyces cerevisiae
159(1)
2.2 Bacteria-Zymomonas mobilis
160(2)
2.3 Genetically engineered microorganisms
162(2)
2.3.1 Pentose metabolism in yeast, bacteria and fungi
164(1)
2.3.2 Metabolic engineering of yeast strains
165(1)
2.3.3 Engineering of Z. mobilis for xylose and arabinose metabolism
166(2)
2.3.4 Engineering of Escherichia coli for ethanol/butanol production
168(1)
2.3.5 Engineering K. oxytoca for ethanol production
169(2)
3 Direct Ethanol Fermentation Processing Strategies
171(3)
3.1 Separate hydrolysis and fermentation (SHF)
172(1)
3.2 Simultaneous saccharification and fermentation (SSF)
172(1)
3.3 Simultaneous saccharification and co-fermentation (SSCF)
173(1)
3.4 Consolidated bioprocessing (CBP)
173(1)
4 Biomass-derived Syngas Fermentation to Biofuels
174(7)
4.1 Biomass gasification
175(1)
4.2 Metabolic pathways and biochemical reactions
175(2)
4.3 Reactor design for syngas fermentation
177(1)
4.4 Important factors affecting syngas fermentation
178(1)
4.4.1 Inhibitory compounds
178(1)
4.4.2 Mass transfer
179(1)
4.4.3 pH and temperature
180(1)
4.4.4 Types of microorganism and growth media
180(1)
4.4.5 Industrial-scale syngas fermentation and economics
181(1)
5 Biobutanol Fermentation
181(3)
6 Summary and Outlook
184(7)
Acknowledgments
184(1)
References
185(6)
Chapter 8 Pyrolysis of Biomass to Bio-oils
191(38)
Haoxi Ben
1 Introduction
191(2)
2 Lignocellulose
193(5)
2.1 Cellulose
193(2)
2.2 Hemicelluloses
195(2)
2.3 Lignin
197(1)
3 Pyrolysis of Biomass Components
198(17)
3.1 Pyrolysis of lignin
198(1)
3.1.1 Gas products of pyrolysis of lignin
198(2)
3.1.2 Liquid products of pyrolysis of lignin
200(5)
3.2 Pyrolysis of cellulose
205(3)
3.3 Pyrolysis of hemicellulose
208(5)
3.4 Pyrolysis of tannin
213(2)
4 Characterization Methods of Pyrolysis Oil
215(14)
4.1 FT-IR analysis of lignin pyrolysis oil
215(1)
4.2 NMR analysis of pyrolysis oil
216(3)
4.3 Elemental analysis, viscosity, acidity, heating value and solid residue of pyrolysis oil
219(4)
Acknowledgments
223(1)
References
223(6)
Chapter 9 Upgrade of Bio-Oil to Bio-Fuel and Bio-Chemical
229(38)
Haoxi Ben
1 Introduction
229(4)
2 Aging Process of Pyrolysis Oils
233(7)
3 Upgrade Pyrolysis Oil with Zeolites
240(10)
3.1 Influences of Si/Al ratios of zeolites on the properties of upgraded pyrolysis oils
241(4)
3.2 Influences of frameworks of zeolites on the properties of upgraded pyrolysis oils
245(5)
4 Hydrodeoxygenation of Pyrolysis Oils
250(17)
4.1 Catalysts used in hydrodeoxygenation process
251(1)
4.2 Sulfided catalyst
252(1)
4.3 Noble metal catalyst
252(1)
4.3.1 Platinum
252(2)
4.3.2 Palladium
254(1)
4.3.3 Rhodium
254(1)
4.3.4 Ruthenium
255(4)
Acknowledgments
259(1)
References
259(8)
Chapter 10 Corrosion Issues in Biofuels
267(28)
Lindsey R. Goodman
Preet M. Singh
1 Introduction
268(1)
2 Corrosion
269(2)
3 Constituents of Biofuels and Their Potential Relationships to Corrosiveness to Steels
271(17)
3.1 Corrosion issues in ethanol and methanol biofuels
272(1)
3.1.1 Chloride contamination of FGE
272(2)
3.1.2 Effects of water concentration on corrosion and SCC of steels in methanol and ethanol biofuels
274(1)
3.1.3 Understanding the mechanisms of effects of water on corrosion and stress corrosion cracking in methanol and ethanol biofuels
275(2)
3.1.4 Role of dissolved oxygen in corrosion and stress corrosion cracking of carbon steels in ethanol biofuels
277(2)
3.1.5 Corrosive effects of organic impurities in fuel grade ethanol
279(1)
3.1.6 Corrosion of materials in ethanol/gasoline blended fuels
280(1)
3.2 Corrosion issues in biodiesel
281(1)
3.2.1 Microbial corrosion in biodiesel
282(1)
3.2.2 Stress corrosion cracking in biodiesel
283(1)
3.3 Corrosion issues in bio-oils or pyrolysis oils
283(3)
3.3.1 Effect of water content and temperature on pyrolysis oil corrosivity
286(2)
4 Conclusions
288(7)
References
289(6)
Chapter 11 Incorporation of Biofuels Technology into a Pulp Mill
295(22)
Marko Hakovirta
1 Introduction
295(2)
2 Biofuels Landscape in the United States
297(2)
3 Biorefinery Concepts
299(9)
3.1 The conversion pathways
300(2)
3.1.1 Solid biomass gasification
302(1)
3.1.2 Gasification-based biorefineries integrated with pulp mills
303(1)
3.1.3 Fast pyrolysis
303(1)
3.1.4 Acid hydrolysis and fermentation
304(3)
3.1.5 Enzymatic hydrolysis and fermentation
307(1)
4 Lignin and Its Opportunities in Biorefineries
308(3)
4.1 Lignin sources in biorefinery concepts
309(1)
4.1.1 Lignin from Kraft pulping process
309(1)
4.1.2 Lignin from sulfite pulping process
310(1)
4.1.3 Other lignin production technologies
310(1)
5 Future of Biorefining in Pulp Mills
311(6)
Acknowledgments
313(1)
References
313(4)
Chapter 12 Integrated Possibilities of Producing Biofuels in Chemical Pulping
317(22)
Raima Alen
1 Introduction
317(4)
1.1 Pulping processes
317(2)
1.2 Possibilities of pulping-based biofuel production
319(2)
2 Autohydrolysis of Wood Chips
321(3)
2.1 Basic considerations
321(1)
2.2 Autohydrolysate-based products
322(2)
3 By-Products of Kraft Pulping
324(4)
3.1 Extractives
324(2)
3.2 Lignin
326(2)
4 Thermochemical Treatment of Black Liquor
328(3)
4.1 General aspects
328(1)
4.2 Gasification
329(1)
4.3 Liquefaction
330(1)
5 By-Products of Acid Sulfite Pulping
331(1)
6 Conclusions
332(7)
References
333(6)
Index 339