Atjaunināt sīkdatņu piekrišanu

E-grāmata: Materials for Biomedical Engineering: Hydrogels and Polymer-based Scaffolds

Edited by (Botany and Microbiology Department, Faculty of Biology, University of Bucharest, Romania), Edited by (Assistant Professor, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Sci)
  • Formāts: PDF+DRM
  • Izdošanas datums: 20-Mar-2019
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128169025
  • Formāts - PDF+DRM
  • Cena: 269,55 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 20-Mar-2019
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128169025

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Materials for Biomedical Engineering: Hydrogels and Polymer-based Scaffolds discusses the use of a wide variety of hydrogels as bioactive scaffolds in regenerative medicine, including updates on innovative materials and their properties. Various types of currently investigated scaffolding materials and hydrogels are discussed, as is their future roles and applications, the main techniques for scaffold fabrication, and their characterization procedures. Readers will be able to use this book as a guide for the selection of the best materials for a specific application.

  • Provides a valuable resource of recent scientific progress, highlighting the most well-known applications of hydrogels as bioactive scaffolds in regenerative medicine
  • Includes novel opportunities and ideas for developing or improving technologies in biomaterials, and in related biomedical industries
  • Features at least 50% of references from the last 2-3 years
List of Contributors xv
Series Preface xxi
Preface xxiii
Chapter 1 Interactions between tissues, cells, and biomaterials: an advanced evaluation by synchrotron radiation-based high-resolution tomography 1(34)
Alessandra Giuliani
Serena Mazzoni
Adrian Manescu
Giuliana Tromba
1.1 Conduction, Induction, and Cell Transplantation in Tissue Engineering: The Limitations of Cross-talk Studies by Conventional Techniques
1(4)
1.2 X-Ray Computed Microtomography: A Challenging Diagnostic Tool
5(2)
1.3 Innovative Approaches to High-Resolution Tomography by Synchrotron Radiation
7(4)
1.4 Skeletal Tissue Engineering
11(7)
1.4.1 Bone
11(4)
1.4.2 Cartilage
15(2)
1.4.3 Tendons
17(1)
1.5 Muscle Tissue Engineering
18(6)
1.5.1 Skeletal Muscles
18(2)
1.5.2 Heart
20(4)
1.6 New Frontiers
24(4)
1.6.1 Central and Peripheral Nervous System
24(1)
1.6.2 Vascularization
25(3)
1.7 Conclusions
28(1)
References
28(6)
Further Reading
34(1)
Chapter 2 Bioprinted scaffolds 35(26)
Florin Iordache
2.1 Introduction
35(5)
2.1.1 Prebioprinting
35(1)
2.1.2 Bioprinting
36(1)
2.1.3 Postbioprinting
36(1)
2.1.4 Geometry of Scaffolds
37(1)
2.1.5 Surface Properties
38(1)
2.1.6 Pore Size
38(1)
2.1.7 Adherence and Biocompatibility
39(1)
2.1.8 Degradation Rates
40(1)
2.2 Mechanical Properties
40(12)
2.2.1 Hydrogel-Derived Scaffolds
40(3)
2.2.2 Agarose Hydrogel
43(1)
2.2.3 Alginate Hydrogel
43(1)
2.2.4 Chitosan Hydrogel
44(1)
2.2.5 Cellulose Hydrogel
45(1)
2.2.6 Fibrin Hydrogel
46(1)
2.2.7 Gelatin/collagen Hydrogel
46(2)
2.2.8 Hyaluronic Acid Hydrogel
48(1)
2.2.9 Matrigel Hydrogel
49(2)
2.2.10 Synthetic Hydrogels
51(1)
2.3 Fibrous Polymer-Derived Scaffolds
52(1)
2.4 Porous Polymer-Derived Scaffolds
53(1)
2.5 Conclusion and Perspectives
54(1)
Acknowledgment
55(1)
References
55(6)
Chapter 3 Fundamentals of chitosan-based hydrogels: elaboration and characterization techniques 61(22)
Rejane Andrade Batista
Caio Gomide Otoni
Paula J.P. Espitia
3.1 Introduction
61(3)
3.2 Chitosan Nature and Main Properties
64(2)
3.3 Fundamentals of Chitosan Hydrogels
66(3)
3.3.1 Physical Hydrogels
67(2)
3.3.2 Chemical Hydrogels
69(1)
3.4 Characterization Techniques
69(7)
3.4.1 Structural Analysis
71(3)
3.4.2 Property Measurements
74(2)
3.4.3 Specific Properties for Biomedical Engineering Applications
76(1)
3.5 Potential Applications and Future Trends of Chitosan Hydrogels
76(1)
References
77(6)
Chapter 4 Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers 83(34)
Ana Carolina B. Benatti
Ana Flavia Pattaro
Ana Amelia Rodrigues
Mariana Vitelo Xavier
Andreas Kaasi
Maria Ingrid Rocha Barbosa
Andre Luiz Jardini
Rubens Maciel Filho
Paulo Kharmandayan
4.1 Tissue Engineering
83(2)
4.2 Scaffolds
85(1)
4.3 Biomaterials
85(5)
4.3.1 Polymeric Biomaterials
88(1)
4.3.2 Bioreabsorbable Biopolymers
89(1)
4.4 Poly(α-Hydroxy Acids)
90(1)
4.5 Poly(α-Hydroxy Acids) Synthesis
91(6)
4.6 Copolymerization of Poly(α-Hydroxy Acids)
97(1)
4.7 Mechanisms of Degradation of Poly(α-Hydroxy Acids)
98(1)
4.8 Biocompatibility
99(1)
4.9 Toxicity of Poly(α-Hydroxy Acids)
100(4)
4.9.1 In Vitro Cytotoxicity Tests
100(2)
4.9.2 In Vitro Hemocompatibility Test
102(1)
4.9.3 In Vivo Biocompatibility Tests
103(1)
4.10 Applications of Poly(α-Hydroxy Acids)-PLA and PGA
104(3)
4.10.1 Nonmedical Applications of Poly(α-Hydroxy Acids)-PLA and PGA
105(1)
4.10.2 Medical Applications of Poly(α-Hydroxy Acids)-PLA and PGA
105(2)
4.11 Future Trends in Biofabrication
107(3)
4.11.1 Electrospinning
107(1)
4.11.2 3D Bioprinting Rapid Prototyping
108(1)
4.11.3 Bioresponsive Hydrogels
108(1)
4.11.4 Biopolymer Composites in Tissue Engineering
109(1)
4.12 Conclusions
110(1)
References
110(6)
Further Reading
116(1)
Chapter 5 Technological challenges and advances: from lactic acid to polylactate and copolymers 117(38)
Luciana Fontes Coelho
Susan Michelz Beitel
Jonas Contiero
5.1 Lactic Acid
117(14)
5.1.1 Factors That Influence Lactic Acid Production
121(2)
5.1.2 Culture Medium for Lactic Fermentation: Alternative Sources of Carbon and Nitrogen
123(2)
5.1.3 Production of Lactic Acid by Fermentation
125(2)
5.1.4 Microorganisms Involved in the Production of Lactic Acid
127(3)
5.1.5 Extraction and Purification of Lactic Acid
130(1)
5.2 Poly(lactic Acid)
131(11)
5.2.1 PLA Chemical and Physical Properties
132(1)
5.2.2 PLA Synthesis
133(2)
5.2.3 Kinds of Polymers, Copolymers, and Their Features
135(2)
5.2.4 PLA Applications
137(3)
5.2.5 PLA Market Development
140(1)
5.2.6 PLA Biodegradation, Biocompatibility, and Toxicity
141(1)
5.3 Conclusion
142(1)
References
143(12)
Chapter 6 PLGA scaffolds: building blocks for new age therapeutics 155(48)
Hafsa Ahmad
Abhishek Arya
Satish Agrawal
Anil Kumar Dwivedi
6.1 Challenges in New Age Therapeutic Strategies
155(2)
6.2 Poly(Lactide-co-Glycolide): General Introduction
157(1)
6.3 Poly(Lactide-co-Glycolide) Synthesis
158(2)
6.4 Poly(Lactide-co-Glycolide) Properties
160(2)
6.5 Poly(Lactide-co-Glycolide) Scaffolds for Bone Tissue Engineering
162(9)
6.5.1 Porous Scaffolds
163(5)
6.5.2 Fibrous Scaffolds
168(2)
6.5.3 Hydrogels
170(1)
6.5.4 Injectable Microparticles
170(1)
6.6 Poly(Lactide-co-Glycolide) Scaffolds in Anticancer Therapy
171(3)
6.7 Poly(Lactide-co-Glycolide) Interventions in Central Nervous System Delivery
174(6)
6.8 Poly(Lactide-co-Glycolide) Strategies for Gene Therapy and Vaccine Delivery
180(3)
6.9 Miscellaneous Poly(Lactide-co-Glycolide) Therapeutics
183(1)
6.10 Conclusions and Future Trends
184(2)
Acknowledgments
186(1)
List of Symbols and Abbreviations
186(1)
References
187(16)
Chapter 7 Electrospun biomimetic scaffolds of biosynthesized poly(β-hydroxybutyrate) from Azotobacter vinelandii strains cell viability and bone tissue engineering 203(32)
Angel Romo-Uribe
7.1 Introduction
203(5)
7.1.1 Polymers as Medical Devices
203(1)
7.1.2 Shape Memory Polymers
204(1)
7.1.3 Smart Polymeric Coatings
204(1)
7.1.4 Electrospun Fibrous Scaffolds
205(2)
7.1.5 Poly-O-Hydroxybutyrate
207(1)
7.2 Methods of Characterization
208(4)
7.2.1 Materials
208(1)
7.2.2 Scaffold Fabrication
209(1)
7.2.3 Fourier-Transformed Infrared Spectroscopy
210(1)
7.2.4 Thermal Analysis
210(1)
7.2.5 X-Ray Scattering
210(1)
7.2.6 Small-Angle Light Scattering
211(1)
7.2.7 Contact Angle
211(1)
7.2.8 Polarized Optical Microscopy
211(1)
7.2.9 Scanning Electron Microscopy
212(1)
7.3 PHB Electrospun Fibrous Scaffolds
212(9)
7.3.1 Scaffolds Morphology
212(5)
7.3.2 Wetting Behavior
217(1)
7.3.3 Aging
218(2)
7.3.4 Sterilization Methods and Influence on Physical Properties
220(1)
7.4 Cell Viability and Bone Tissue Regeneration
221(6)
7.4.1 Cell Viability and HEK293 Cells
221(2)
7.4.2 Bone Tissue Regeneration and Human Osteoblast Cells
223(4)
7.5 Concluding Remarks
227(1)
Glossary of Terms
228(1)
References
229(5)
Further Reading
234(1)
Chapter 8 Polyurethane-based structures obtained by additive manufacturing technologies 235(24)
Pablo C. Caracciolo
Nayla J. Lores
Gustavo A. Abraham
8.1 Introduction
235(2)
8.2 Bioresorbable Polyurethanes in Biomedical Devices
237(3)
8.3 Additive Manufacturing for Biomedical Polyurethane Processing
240(1)
8.3.1 Inkjet Printing
240(1)
8.3.2 Extrusion-Based Methods
240(1)
8.3.3 Particle Binding
241(1)
8.4 Additive Manufacturing of Composite Polyurethanes
241(12)
8.4.1 Inkjet Printing
241(2)
8.4.2 Extrusion-Based Methods
243(10)
8.4.3 Particle Binding
253(1)
8.5 Remarks and Perspectives
253(1)
Acknowledgment
254(1)
References
254(5)
Chapter 9 Composites based on bioderived polymers: potential role in tissue engineering: Vol VI: resorbable polymer fibers 259(38)
Monika Yadav
Kunwar Paritosh
Nidhi Pareek
Vivekanand Vivekanand
9.1 Introduction
259(1)
9.2 Polyesters
260(11)
9.2.1 Poly(Lactic Acid)
261(8)
9.2.2 Poly(lactic-co-glycolic acid) (PLGA) copolymers
269(2)
9.3 Collagen
271(5)
9.3.1 Collagen Bioactive Ceramic Composites
272(2)
9.3.2 Medical Applications of Collagen
274(2)
9.4 Silk Fibroin
276(3)
9.4.1 Structure of Silk Fibroin
276(1)
9.4.2 Processing of Silk Fibroin
277(1)
9.4.3 Medical Applications of Silk Fibroin
278(1)
9.5 Biocellulose
279(5)
9.5.1 Biocellulose Fibril Structure
279(1)
9.5.2 Properties of Biocellulose
280(1)
9.5.3 Biomedical Applications of Biocellulose
281(3)
9.6 Conclusions
284(1)
References
285(12)
Chapter 10 Composite scaffolds for bone and osteochondral defects 297(42)
Vincenzo Guarino
Silvia Scaglione
Monica Sandri
Simone Sprio
Anna Tampieri
Luigi Ambrosio
10.1 Introduction
297(2)
10.2 Biodegradable Matrices
299(3)
10.3 Bioresorbable Matrices
302(2)
10.4 Applications in Tissue Engineering
304(21)
10.4.1 Composite Scaffolds for Bone
304(9)
10.4.2 Composite Scaffolds for Osteochondral Defects
313(12)
10.5 Conclusions
325(2)
References
327(10)
Further Reading
337(2)
Chapter 11 Plasma treated and untreated thermoplastic biopolymers/biocomposites in tissue engineering and biodegradable implants 339(32)
Binay Bhushan
Rakesh Kumar
11.1 Introduction
339(1)
11.2 Structure of PLA and PHAs
340(1)
11.3 Synthesis of PLA and PHAs
341(3)
11.4 Properties of PLA and PHAs
344(6)
11.4.1 Mechanical Properties
345(1)
11.4.2 Thermal Properties
346(2)
11.4.3 Transparency
348(1)
11.4.4 Biocompatibility
349(1)
11.4.5 Processability
349(1)
11.5 Application of PLA and PHAs in Tissue Engineering
350(1)
11.6 Biodegradability of PLA and PHAs
351(3)
11.7 Plasma Treatment of PLA and PHAs
354(10)
11.7.1 Plasma and Plasma-Surface Interactions
355(1)
11.7.2 Characterization Techniques for Plasma Treated Polymer Surfaces
356(2)
11.7.3 Plasma Treatment of PLA
358(3)
11.7.4 Plasma Treatment of PHAs
361(2)
11.7.5 Disadvantages of Plasma Treatment
363(1)
11.8 Conclusions
364(1)
References
365(6)
Chapter 12 The design of two different structural scaffolds using 3-tricalcium phosphate (3-TCP) and collagen for bone tissue engineering 371(32)
Takaaki Arahira
Mitsugu Todo
12.1 Introduction
371(3)
12.2 Collagen-Based Porous Scaffold
374(4)
12.2.1 Fabrication and Characterization of Particle Distributed Scaffold
374(2)
12.2.2 In Vitro Cell Experiment
376(2)
12.3 Experimental Results
378(4)
12.3.1 Characterization of Particle Distributed Scaffold
378(1)
12.3.2 Results of In Vitro Cell Experiment
379(3)
12.4 Mechanism of Variational Mechanical Behavior Between Scaffold Structure and Cell Response
382(3)
12.5 13-TCP-Based Porous Scaffold
385(1)
12.5.1 Fabrication and Characterization of Two Phase Structural Scaffold
385(1)
12.6 In Vitro Cell Experiment
386(2)
12.6.1 Cell Culture
386(1)
12.6.2 Evaluation of Mechanical Characteristics
387(1)
12.6.3 Microstructural Characterization
387(1)
12.6.4 Evaluation of Cell Number and Alkaline Phosphatase Activity
387(1)
12.6.5 Gene Expression Analysis
388(1)
12.6.6 Alizarin Red S Staining
388(1)
12.6.7 Statistics
388(1)
12.7 Experimental Results
388(6)
12.7.1 Characterization of Two Phase Structural Scaffold
388(2)
12.7.2 Results of In Vitro Cell Experiment
390(4)
12.8 Mechanism of Variational Mechanical Behavior Between Scaffold Structure and Cell Response
394(3)
12.9 Summary
397(1)
12.10 Present Study
397(1)
12.11 Future Work
398(1)
Acknowledgment
398(1)
References
398(5)
Chapter 13 Composite materials based on hydroxyapatite embedded in biopolymer matrices: ways of synthesis and application 403(38)
A. Yanovska
S. Bolshanina
13.1 Types of Biopolymer Matrices (Collagen, Gelatin, Chitosan, Alginate, and Their Combinations)
403(14)
13.2 Calcium Phosphates as an Essential Part of Composite Materials
417(4)
13.3 Formation of Composite Materials
421(6)
13.4 Biomedical Applications of Obtained Composite Materials
427(4)
References
431(9)
Further Reading
440(1)
Chapter 14 Study of microstructural, structural, mechanical, and vibrational properties of defatted trabecular bovine bones: natural sponges 441(46)
Sandra M. Londotio-Restrepo
Cristian F. Ramirez-Gutierrez
Herminso Villarraga-Gomez
Mario E. Rodriguez-Garcia
14.1 Introduction
441(3)
14.2 Bone Composition
444(17)
14.2.1 Cortical Bone
444(2)
14.2.2 Trabecular Bone
446(1)
14.2.3 Bone Porosity
446(1)
14.2.4 Hydroxyapatite
447(2)
14.2.5 Biohydroxyapatite
449(10)
14.2.6 Collagen
459(1)
14.2.7 Osteocalcin
460(1)
14.2.8 Water
460(1)
14.2.9 Fat
461(1)
14.3 Study of Spongy Bone
461(14)
14.3.1 Collection and Preparation of Samples
462(1)
14.3.2 Morphological Characterization
463(2)
14.3.3 X-ray Tomography
465(4)
14.3.4 Structural Properties
469(2)
14.3.5 Vibrational Characterization: Raman Spectroscopy
471(3)
14.3.6 Mechanical Properties
474(1)
14.4 Synthetic Scaffolds Versus Trabecular Bone
475(4)
14.5 Conclusions and Perspective
479(1)
Acknowledgments
480(1)
References
480(4)
Further Reading
484(1)
Appendix A
485(2)
Chapter 15 Laser processing of biopolymers for development of medical and high-tech devices 487(40)
Nadya E. Stankova
Petar A. Atanasov
Nikolay N. Nedyalkov
Konstantin Kolev
Eugenia Valova
Stephan Armyanov
15.1 Introduction
487(4)
15.2 Structure and Raman Spectrum of Polydimethylsiloxane
491(1)
15.3 Experimental and Analytical Techniques
492(2)
15.4 Optical Properties of Polydimethylsiloxane During Ns-laser Treatment
494(4)
15.5 Fs-Laser Nanostructuring
498(5)
15.6 Ps-Laser Processing
503(1)
15.7 Comparison Between Fs- and Ns-Laser Processing
504(6)
15.8 XPS Study of Ns-Laser Processing of Polydimethylsiloxane
510(5)
15.9 Electroless Metallization Directly After the Laser Treatment
515(1)
15.10 Ns-Laser Processing in Different Environments
516(5)
15.11 Conclusion and Perspectives for Future Investigations
521(1)
Acknowledgments
522(1)
References
522(4)
Further Reading
526(1)
Index 527
Alina-Maria Holban is a lecturer in Microbiology and Immunology, at the Faculty of Biology, University of Bucharest; and associate researcher at the University Politehnica of Bucharest, Romania. Her primary area of research is the development of bionanomaterials with antimicrobial applications. Dr. Holban has published 75 papers in peer-reviewed journals, 42 conference/symposia proceedings, and has edited more than 21 edited books. Alexandru Mihai Grumezescu is a lecturer in the Department of Science and Engineering of Oxide Materials and Nanomaterials, at the Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Romania. He is an experienced researcher and published editor in the field of nano and biostructures. He is the editor-in-chief of two international open access journals: Biointerface Research in Applied Chemistry, Letters and Applied NanoBioScience. Dr. Grumezescu has published more than 200 peer-reviewed papers, authored nine books, and has served as an editor for more than 50 scholarly books.