Atjaunināt sīkdatņu piekrišanu

Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products 1st ed. 2016 [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 338 pages, height x width: 235x155 mm, weight: 7037 g, 71 Illustrations, color; 70 Illustrations, black and white; XLVII, 338 p. 141 illus., 71 illus. in color., 1 Hardback
  • Sērija : Springer Series in Materials Science 224
  • Izdošanas datums: 23-Jan-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319234188
  • ISBN-13: 9783319234182
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 338 pages, height x width: 235x155 mm, weight: 7037 g, 71 Illustrations, color; 70 Illustrations, black and white; XLVII, 338 p. 141 illus., 71 illus. in color., 1 Hardback
  • Sērija : Springer Series in Materials Science 224
  • Izdošanas datums: 23-Jan-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319234188
  • ISBN-13: 9783319234182
Citas grāmatas par šo tēmu:
This book is about applied materials research in industry. It presents various important topics and challenges and gives guidance to materials researchers who move to industry. The book focuses on the materials manufacturing issues for industrial application. It deals with developments and challenges in traditional materials areas, such as metals and ceramics, and new opportunities that have risen from nanotechnology and additive manufacturing. The chapters, written by senior people from large companies, include successful manufacturing undertakings, several distinct and unresolved manufacturing challenges, with the focus on approaches, timelines and the skills needed for future company research and development. The book provides a cross-section of current and future approaches valuable for new employees and academics working in industry.

Advanced Ceramics for Energy Applications.- Challenges Facing the Commercial Transport Industry.- Investments, Innovation, and Sustainability.- Materials and Technical Achievement.- An Aerospace Perspective.- Manufacturing of Advanced Refractory Technologies.- Inventing the Future with New Materials.- Advances in Glass Strength and Its Impact on Society.- From Academia to the Business.
1 Corning Incorporated: Designing a New Future with Glass and Optics 1(38)
Michael S. Pambianchi
Matthew Dejneka
Timothy Gross
Adam Ellison
Sinue Gomez
James Price
Ye Fang
Pushkar Tandon
Dana Bookbinder
Ming-Jun Li
1.1 Introduction
1(5)
1.1.1 Research
3(2)
1.1.2 Development and Engineering
5(1)
1.2 Coming® Gorilla® Glass for Touch-Enabled Displays
6(15)
1.2.1 Strengthening of Glass
6(2)
1.2.2 Chemical Tempering of Glass
8(1)
1.2.3 Gorilla® Glass
9(4)
1.2.4 Thermal History
13(1)
1.2.5 Fining
14(2)
1.2.6 Resistance to Damage
16(1)
1.2.7 Higher Compressive Stress
17(3)
1.2.8 Future
20(1)
1.3 Epic® Sensors: Label-Free Optical Sensing of Drug-Target Interactions
21(4)
1.3.1 Fluorescent Labels in Drug Discovery
21(1)
1.3.2 State of the Art in Sensing of Drug-Target Binding
22(1)
1.3.3 Corning's Contributions to Label-Free Detection
22(2)
1.3.4 Future Needs in Label-Free Detection of Target Binding
24(1)
1.4 Clearcurve® Optical Fiber
25(9)
1.4.1 Basic Idea of Light Confinement in Optical Fibers
25(1)
1.4.2 Corning's Contribution to Bend Resistant Optical Fibers
26(6)
1.4.3 State of the Art in Bend-Resistant Optical Fibers
32(2)
1.4.4 Future Needs in Bend-Resistant Optical Fibers
34(1)
1.5 Skills and Talents
34(1)
References
35(4)
2 IRradiance Glass: Technology Transfer from University to Industry 39(20)
J. David Musgraves
Jennifer McKinley
Peter Wachtel
2.1 Introduction
39(5)
2.1.1 An Overview of IRradiance Glass
40(1)
2.1.2 General Principles of Chalcogenide Glasses
41(2)
2.1.3 Applications of Infrared Optics
43(1)
2.2 Gradient Refractive Index (GRIN) Optics
44(2)
2.2.1 Examples of GRIN Optics
45(1)
2.3 Description of the IRradiance Glass GRIN Approach
46(3)
2.3.1 Remaining Technical Challenges
49(1)
2.4 Technology Transfer
49(5)
2.4.1 History of the Passage of Bayh-Dole
50(1)
2.4.2 Overview of the Technology Transfer Process
51(1)
2.4.3 Disclosure and Patenting
52(1)
2.4.4 Interfacing with Technology Transfer Office and the University Research Group: Relationships, Intellectual Property (IP) Ownership and Conflict of Interest
52(1)
2.4.5 Licensing University-Generated Technology
53(1)
2.5 Future Directions in GRIN Optics and Technology Transfer
54(1)
2.5.1 GRIN Optics
54(1)
2.5.2 Open Innovation and Trends in R&D Commercialization
55(1)
2.5.3 Skills and Talents for Tomorrow's Scientists at IRG
55(1)
References
55(4)
3 General Electric Company: Selected Applications of Ceramics and Composite Materials 59(34)
Gregory Corman
Ram Upadhyay
Shatil Sinha
Sean Sweeney
Shanshan Wang
Stephan Biller
Krishan Luthra
3.1 Introduction
59(2)
3.2 Ceramic Matrix Composites (CMCs)
61(11)
3.2.1 History of CMC Development
62(2)
3.2.2 GE's Prepreg Melt Infiltrated (MI) Composite Development
64(2)
3.2.3 Material Properties
66(2)
3.2.4 Recession and Its Abatement
68(2)
3.2.5 Engine Testing of CMC Components
70(2)
3.2.6 Future Needs
72(1)
3.3 Polymer Matrix Composite (PMC) Fan Blades
72(7)
3.3.1 History of PMC Fan Blade Development
72(2)
3.3.2 Material Characterization
74(1)
3.3.3 Process Modeling and Process Cycle Design
75(3)
3.3.4 Tools for Producibility and Design
78(1)
3.3.5 PMC Summary and Challenges
78(1)
3.4 NaMx Batteries
79(8)
3.4.1 History of β"-Alumina Solid Electrolyte (BASE) Ceramics
80(2)
3.4.2 GE's BASE Process
82(3)
3.4.3 Improving Factory Systems Performance Through Manufacturing Analytics
85(1)
3.4.4 NaMx Battery Summary and Challenges
86(1)
3.5 Educational Recommendations
87(1)
3.6 Summary and Conclusions
88(1)
References
88(5)
4 KEMET Electronics: Breakthroughs in Capacitor Technology 93(38)
Abhijit Gurav
Xilin Xu
Yuri Freeman
Erik Reed
4.1 Introduction
93(4)
4.1.1 Recent Trends in Electronics
94(1)
4.1.2 Ceramic and Polymer-Tantalum Capacitors
94(3)
4.2 Ceramic Capacitors for High Temperature Applications
97(9)
4.2.1 Growing Need for Electronics for Extreme Environments
97(1)
4.2.2 Development of Ceramic Dielectric for High Temperatures
98(1)
4.2.3 Electrical Performance at High Temperatures
98(4)
4.2.4 Modeling of Accelerated and Life Test Reliability
102(4)
4.2.5 Manufacturing Perspective: Challenges of Scale-up, Testing and Screening
106(1)
4.3 Ceramic Capacitors for High Reliability Space and Military Applications
106(10)
4.3.1 Trends in the Electronics for Space and Military
106(1)
4.3.2 Paradigm Shift in High Reliability Capacitor Technology
107(1)
4.3.3 Base Metal Electrode (BME) COG
108(3)
4.3.4 Base-Metal Electrode (BME) X7R
111(3)
4.3.5 Manufacturing Considerations
114(2)
4.4 High Reliability Polymer Tantalum Capacitors
116(9)
4.4.1 Introduction
116(1)
4.4.2 Breakthroughs in Technology
117(3)
4.4.3 Outstanding Performance
120(1)
4.4.4 Testing and Screening
121(3)
4.4.5 Validation in Customer Testing
124(1)
4.5 Future Directions
125(3)
4.5.1 R&D and Capacitor Product Development
125(1)
4.5.2 R&D and Innovation in the Changing Times
126(1)
4.5.3 Challenges for the Research Community
127(1)
References
128(3)
5 American Superconductor: Second Generation Superconductor Wire—From Research to Power Grid Applications 131(36)
Srivatsan Sathyamurthy
Cees Thieme
Martin W. Rupich
5.1 Introduction
131(2)
5.1.1 Cuprate-Based High Temperature Superconductors
132(1)
5.2 (RE)BCO Structure and Properties
133(2)
5.3 2G HTS Wire—Architecture and Manufacturing Options
135(4)
5.3.1 Template Technologies
136(1)
5.3.2 Superconductor Layer Deposition
137(1)
5.3.3 Roll-to-Roll Processing
138(1)
5.4 AMSC's Selection of the RABiTS/MOD Process Technology
139(15)
5.4.1 AMSC's RABiTS/MOD Wire Manufacturing Process
140(1)
5.4.2 The RABiTS Substrate
140(6)
5.4.3 Epitaxial Growth of Oxide Buffer Layers on NiW Substrates
146(3)
5.4.4 Epitaxial Growth of Thick YBCO Films
149(4)
5.4.5 Wire Fabrication
153(1)
5.5 On-Going R&D
154(2)
5.6 2G HTS Wire Manufacturers, Wire Market and Needs
156(3)
5.6.1 Fault Current Limiters
157(1)
5.6.2 Cables
157(1)
5.6.3 Rotating Machines
158(1)
5.6.4 Other Applications
159(1)
5.7 Summary
159(1)
References
160(7)
6 Trans-Tech: Perspectives on the Development Process for New Microwave Dielectric and Magnetic Ceramics 167(28)
Michael D. Hill
6.1 Practice of Material Development
167(3)
6.1.1 Driving Force
168(1)
6.1.2 Procedure
168(2)
6.2 Wireless Infrastructure and the Use of Ceramic Materials
170(1)
6.2.1 Historical Info
170(1)
6.2.2 Auto-tune Combiners
170(1)
6.2.3 Transverse Magnetic (TM) Mode Filters
170(1)
6.2.4 Magnetics for Isolators and Circulators
171(1)
6.3 Basics of Microwave Dielectrics
171(4)
6.3.1 Relevant Material Parameters
171(1)
6.3.2 Classical Materials
172(1)
6.3.3 Rutile and ZrTiO4 Type Materials
173(1)
6.3.4 Perovskite-Based Titanates
174(1)
6.3.5 Titanate Processing
175(1)
6.4 Technology Trends Necessitating Material Development
175(4)
6.4.1 Original Equipment Manufacturer (OEM) Push to Super Q Dielectrics
175(2)
6.4.2 Origins of High-Q Behavior
177(1)
6.4.3 Stabilization of Anti-phase Domain Boundaries and Production of a Super Q Material
178(1)
6.5 Development of a New Perovskite
179(1)
6.6 Basics of Microwave Magnetics
180(3)
6.6.1 Magnetic Oxides
180(1)
6.6.2 Magnetic Garnets
180(2)
6.6.3 Magnetic Applications and Narrow Linewidth Garnets
182(1)
6.7 Development for Cost Reduction and the Use of Critical Materials
183(2)
6.7.1 Price Erosion
183(1)
6.7.2 Critical Materials
183(1)
6.7.3 Indium in Garnets
184(1)
6.7.4 Tantalum Free
185(1)
6.8 Transition from R&D into Production
185(3)
6.8.1 Intellectual Property
185(1)
6.8.2 New Product Development Process
186(1)
6.8.3 Movement to Production Scale Equipment
187(1)
6.8.4 Marketing New Material Products
188(1)
6.9 Emerging Directions in Microwave Materials Research
188(3)
6.9.1 Low Dielectric Constant Microwave Dielectrics
188(1)
6.9.2 High Dielectric Constant Materials and the Physical Origins of the Dielectric Constant
189(1)
6.9.3 Current Research into Magnetic Materials
189(1)
6.9.4 Special Applications for Microwave Materials
190(1)
6.10 Future Challenges
191(1)
6.10.1 Low Cost Foreign Competition
191(1)
6.10.2 Staying Ahead of the Curve
191(1)
References
192(3)
7 Catalytic Materials: Nanofibers—From Research to Manufacture 195(32)
Nelly M. Rodriguez
R. Terry K. Baker
7.1 Introduction
195(3)
7.1.1 Background
196(1)
7.1.2 Graphene Nanofibers
197(1)
7.2 Fundamental Aspects of Graphene Nanofibers
198(11)
7.2.1 The Catalyst
198(1)
7.2.2 Growth Mechanism
198(1)
7.2.3 Synthesis of Graphene Nanofibers
199(3)
7.2.4 Characterization Studies
202(3)
7.2.5 Properties of Graphene Nanofibers
205(2)
7.2.6 Heat Treated Graphene Nanofibers
207(1)
7.2.7 Graphene
208(1)
7.3 Applications of Graphene Nanofibers
209(12)
7.3.1 Use of Graphene Nanofibers as Catalysts
209(4)
7.3.2 Use of Graphene Nanofibers as Catalyst Supports
213(3)
7.3.3 Use of Graphene Nanofibers in Lithium Ion Batteries
216(2)
7.3.4 Use of Graphene Nanofibers in Polymer Electrolyte Membrane (PEM) Fuel Cells
218(3)
7.4 Commercial Production of Graphene Nanofibers
221(1)
7.5 Conclusions
221(1)
7.6 Future Needs and Challenges
222(1)
References
223(4)
8 Dow Chemical: Materials Science Contributions to Membrane Production 227(40)
Abhishek Shrivastava
Ian A. Tomlinson
Abhishek Roy
Jon E. Johnson
Steven Jons
Caleb V. Funk
Luke Franklin
Martin Peery
8.1 Introduction to Membrane Processes in Water Purification
227(3)
8.2 Recent Developments in Membrane and Module Technology
230(15)
8.2.1 Reverse Osmosis Membranes
230(9)
8.2.2 Reverse Osmosis Membrane Module
239(6)
8.3 Ultrafiltration Membrane and Module
245(10)
8.3.1 Ultrafiltration Membranes
245(5)
8.3.2 Ultrafiltration Modules
250(4)
8.3.3 Unmet Needs in Ultrafiltration
254(1)
8.4 Conclusion
255(1)
References
255(12)
9 American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications 267(36)
Kim Nelson
Theodora Retsina
Mikhail Iakovlev
Adriaan van Heiningen
Yulin Deng
Jo Anne Shatkin
Arie Mulyadi
9.1 About American Process Inc
267(2)
9.2 About Nanocellulose
269(2)
9.3 Nanocellulose Commercial Applications
271(6)
9.3.1 Nanocellulose Polymer Composites
273(2)
9.3.2 Nanocellulose Concrete Composites
275(1)
9.3.3 Nanocellulose Aerogels
275(1)
9.3.4 Nanocellulose Barrier Films and Packaging
276(1)
9.3.5 Nanocellulose Viscosity Modifiers
277(1)
9.4 Nanocellulose Manufacturing Challenge: Production Cost
277(12)
9.4.1 Conventional Cellulose Nanocrystals Production
278(1)
9.4.2 Conventional Cellulose Nanofibrils Production
279(1)
9.4.3 AVAP Nanocellulose Production
280(4)
9.4.4 AVAP Nanocellulose Process Chemistry
284(5)
9.5 Manufacturing Challenge: Hydrophobic surface modification for Incorporation into Plastics
289(4)
9.6 Other Nanocellulose Manufacturing Grand Challenges
293(3)
9.6.1 Drying
293(1)
9.6.2 International Standards
294(1)
9.6.3 Rapid, Low Cost Characterization Methods
295(1)
9.6.4 Hiring and Education Needs
296(1)
References
296(7)
10 The Procter and Gamble Company: Current State and Future Needs in Materials Modeling 303(26)
Russell H. DeVane
Matthew S. Wagner
Bruce P. Murch
10.1 Introduction
303(2)
10.2 Today's Challenges: 1st Principles Determination of Materials Properties
305(2)
10.3 Tools and Methods in Materials Modeling
307(7)
10.3.1 High Performance Computing
307(1)
10.3.2 Computational Material Science
307(1)
10.3.3 Scales
308(1)
10.3.4 Atomistic Scale
309(1)
10.3.5 Coarse-Graining
309(1)
10.3.6 Molecular Dynamics and Monte Carlo
310(1)
10.3.7 Mesoscale: Dissipative Particle Dynamics and Brownian Dynamics
311(1)
10.3.8 Field Theory
312(1)
10.3.9 Continuum Methods
313(1)
10.3.10 Multiscale Modeling
313(1)
10.4 Applications
314(5)
10.4.1 Nano- and Microstructure of Soft Materials
314(2)
10.4.2 Assessment of Mechanical Properties
316(1)
10.4.3 Solute Impacts on Mechanical Properties
317(1)
10.4.4 Phase Stability
318(1)
10.5 Conclusions
319(2)
References
321(8)
Afterword 329(4)
Index 333