Atjaunināt sīkdatņu piekrišanu

E-grāmata: Materials for Solid State Lighting and Displays

Edited by (McMaster University, Ontario, Canada)
  • Formāts - PDF+DRM
  • Cena: 170,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

LEDs are in the midst of revolutionizing the lighting industry



  • Up-to-date and comprehensive coverage of light-emitting materials and devices used in solid state lighting and displays 
  • Presents the fundamental principles underlying luminescence
  • Includes inorganic and organic materials and devices
  • LEDs offer high efficiency, long life and mercury free lighting solutions
List of Contributors xi
Series Preface xiii
Preface xv
Acknowledgments xvii
About the Editor xix
1 Principles of Solid State Luminescence 1(30)
Adrian Kitai
1.1 Introduction to Radiation from an Accelerating Charge
1(3)
1.2 Radiation from an Oscillating Dipole
4(1)
1.3 Quantum Description of an Electron during a Radiation Event
5(2)
1.4 The Exciton
7(3)
1.5 Two-Electron Atoms
10(6)
1.6 Molecular Excitons
16(3)
1.7 Band-to-Band Transitions
19(4)
1.8 Photometric Units
23(5)
1.9 The Light Emitting Diode
28(2)
References
30(1)
2 Quantum Dots for Displays and Solid State Lighting 31(60)
Jesse R. Manders
Debasis Bera
Lei Qian
Paul H. Holloway
2.1 Introduction
31(3)
2.2 Nanostructured Materials
34(2)
2.3 Quantum Dots
36(5)
2.3.1 History of Quantum Dots
36(1)
2.3.2 Structure and Properties Relationship
36(2)
2.3.3 Quantum Confinement Effects on Band Gap
38(3)
2.4 Relaxation Process of Excitons
41(5)
2.4.1 Radiative Relaxation
42(3)
2.4.2 Nonradiative Relaxation Process
45(1)
2.5 Blinking Effect
46(1)
2.6 Surface Passivation
47(2)
2.6.1 Organically Capped QDs
47(1)
2.6.2 Inorganically Passivated QDs
48(1)
2.7 Synthesis Processes
49(4)
2.7.1 Top-Down Synthesis
49(1)
2.7.2 Bottom-Up Approach
50(3)
2.8 Optical Properties and Applications
53(28)
2.8.1 Displays
53(20)
2.8.2 Solid State Lighting
73(5)
2.8.3 Biological Applications
78(3)
2.9 Perspective
81(1)
Acknowledgments
82(1)
References
82(9)
3 Color Conversion Phosphors for Light Emitting Diodes 91(44)
Jack Silver
George R. Fern
Robert Withnall
3.1 Introduction
91(2)
3.2 Disadvantages of Using LEDs Without Color Conversion Phosphors
93(2)
3.3 Phosphors for Converting the Color of Light Emitted by LEDs
95(4)
3.3.1 General Considerations
95(1)
3.3.2 Requirements of Color Conversion Phosphors
95(2)
3.3.3 Commonly Used Activators in Color Conversion Phosphors
97(1)
3.3.4 Strategies for Generating White Light from LEDs
97(1)
3.3.5 Outstanding Problems with Color Conversion Phosphors for LEDs
98(1)
3.4 Survey of the Synthesis and Properties of Some Currently Available Color Conversion Phosphors
99(23)
3.4.1 Phosphor synthesis
99(1)
3.4.2 Metal Oxide Based Phosphors
99(14)
3.4.3 Metal Sulfide Based Phosphors
113(4)
3.4.4 Metal Nitrides
117(3)
3.4.5 Alkaline Earth Metal Oxo-Nitrides
120(1)
3.4.6 Metal Fluoride Phosphors
121(1)
3.5 Multi-Phosphor pcLEDs
122(1)
3.6 Quantum Dots
123(1)
3.7 Laser Diodes
124(1)
3.8 Conclusions
125(1)
Acknowledgments
125(1)
References
126(9)
4 Nitride and Oxynitride Phosphors for Light Emitting Diodes 135(48)
Le Wang
Rong-Jun Xie
4.1 Introduction
135(3)
4.2 Synthesis of Nitride and Oxynitride Phosphors
138(4)
4.2.1 Solid State Reaction Method
138(1)
4.2.2 Gas Reduction and Nitridation
139(1)
4.2.3 Carbothermal Reduction and Nitridation
140(1)
4.2.4 Alloy Nitridation
140(1)
4.2.5 Ammonothermal Synthesis
141(1)
4.3 Photoluminescence Properties of Nitride and Oxynitride Phosphors
142(23)
4.3.1 Luminescence Spectra of Typical Activators
142(23)
4.4 Emerging Nitride Phosphors and Their Synthesis
165(4)
4.4.1 Narrow-Band Red Nitride Phosphors
165(2)
4.4.2 Narrow-Band Green Nitride Phosphors
167(2)
4.5 Applications of Nitride Phosphors
169(4)
4.5.1 General Lighting
169(3)
4.5.2 LCD Backlight
172(1)
References
173(10)
5 Organic Light Emitting Device Materials for Displays 183(48)
Tyler Davidson-Hall
Yoshitaka Kajiyama
Hany Aziz
5.1 Introduction to OLEDs and Organic Electroluminscent Materials
184(2)
5.2 OLED Light Emitting Materials
186(17)
5.2.1 Neat Emitters
187(5)
5.2.2 Guest Emitters
192(9)
5.2.3 Aggregate-Induced Emission
201(2)
5.3 OLED Displays
203(10)
5.3.1 RGB Color Patterning Approaches
203(1)
5.3.2 Display Addressing Approaches
204(3)
5.3.3 FMM Technology
207(1)
5.3.4 Alternative Fabrication Techniques
208(4)
5.3.5 Outlook on OLED Display Commercialization
212(1)
5.4 Quantum Dot Light Emitting Devices
213(7)
5.4.1 QD Optimization by Core-Shell Morphology
214(1)
5.4.2 Organic Charge Transport QD-LEDs
215(2)
5.4.3 Hybrid Organic-Inorganic Charge Transport QD-LEDs
217(2)
5.4.4 Energy Transfer Enhanced QD-LEDs
219(1)
5.4.5 QD-LED Lifetime
220(1)
References
220(11)
6 White-Light Emitting Materials for Organic Light-Emitting Diode-Based Displays and Lighting 231(42)
Simone Lenk
Michael Thomschke
Sebastian Reineke
6.1 Introduction
231(2)
6.2 White Organic Light-Emitting Diodes
233(3)
6.3 Photometry and Radiometry
236(6)
6.3.1 OLED Efficiencies
239(1)
6.3.2 Color Stimulus Specification
239(1)
6.3.3 Color Correlated Temperature
240(1)
6.3.4 Color Rendering Index
241(1)
6.3.5 White Light
241(1)
6.4 Device Optics
242(6)
6.4.1 Optical Properties of Thin Films
242(3)
6.4.2 Optical Outcoupling
245(2)
6.4.3 Top-Emitting OLEDs
247(1)
6.4.4 Simulation Tools
248(1)
6.5 Materials for Efficient White Electroluminescence
248(15)
6.5.1 Spin Statistics for Electroluminescence
248(1)
6.5.2 Fluorescence-Emitting Molecules
249(2)
6.5.3 Advanced Concepts Comprising Fluorescent Emitters
251(1)
6.5.4 Phosphorescence-Emitting Molecules
251(5)
6.5.5 Single White-Light Emitting Phosphorescent Materials
256(1)
6.5.6 Thermally Activated Delayed Fluorescence-Based Emitters
257(4)
6.5.7 Phosphorescence Versus Thermally Activated Delayed Fluorescence
261(2)
6.5.8 TADF Assisted Fluorescence (TAF) Emitters
263(1)
6.6 Polymer Concepts
263(5)
6.6.1 Various Concepts Involving Polymer Materials
265(2)
6.6.2 Learning from High Performance Small Molecules for High Efficiency Polymers
267(1)
6.7 Summary and Outlook
268(1)
References
269(4)
7 Light Emitting Diode Materials and Devices 273(40)
Michael R. Krames
7.1 Introduction
273(1)
7.2 Light Emitting Diode Basics
273(7)
7.2.1 Construction
273(2)
7.2.2 Recombination Processes
275(2)
7.2.3 Heterojunctions
277(1)
7.2.4 Quantum Wells
278(1)
7.2.5 Current Injection
278(2)
7.2.6 Forward voltage
280(1)
7.3 Material Systems
280(8)
7.3.1 Ga(As,P)
280(1)
7.3.2 Ga(As,P):N
281(1)
7.3.3 (Al,Ga)As
282(1)
7.3.4 (AlGa)InP
282(1)
7.3.5 (Ga,In)N
283(2)
7.3.6 White Light Generation
285(3)
7.4 Packaging Technologies
288(3)
7.4.1 Low Power
288(1)
7.4.2 Mid Power
288(1)
7.4.3 High Power
289(1)
7.4.4 Chip-On-Board LEDs
290(1)
7.4.5 Multi-Color LEDs
290(1)
7.4.6 Electrostatic Discharge Protection
290(1)
7.5 Performance
291(16)
7.5.1 Light Extraction Efficiency
291(1)
7.5.2 Monochromatic Performance
292(6)
7.5.3 White-Emitting Performance
298(8)
7.5.4 Temperature Effects
306(1)
7.5.5 Reliability
306(1)
References
307(6)
8 Alternating Current Thin Film and Powder Electroluminescence 313(26)
Adrian Kitai
8.1 Introduction
313(1)
8.2 Background of TFEL
314(3)
8.2.1 Thick Film Dielectric EL Structure
315(1)
8.2.2 Ceramic Sheet Dielectric EL
316(1)
8.2.3 Sphere-Supported TFEL
316(1)
8.3 Theory of Operation
317(7)
8.4 Electroluminescent Phosphors
324(1)
8.5 Thin Film Double-Insulating EL Devices
325(2)
8.6 Current Status of TFEL
327(1)
8.7 Background of AC Powder EL
328(1)
8.8 Mechanism of Light Emission in AC Powder EL
329(4)
8.9 Electroluminescence Characteristics of AC Powder EL Materials
333(1)
8.10 Emission Spectra of AC Powder EL
334(1)
8.11 Luminance Degradation
335(1)
8.12 Moisture and Operating Environment
336(1)
8.13 Current Status and Limitations of Powder EL
336(1)
8.14 Research Directions in AC Powder EL and TFEL
336(1)
References
337(2)
Index 339
Adrian Kitai is Professor in Materials Science and Engineering at McMaster University, Canada.