Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mathematical Foundations of Computer Science: Sets, Relations, and Induction

  • Formāts: PDF+DRM
  • Sērija : Monographs in Computer Science
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461230861
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Monographs in Computer Science
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461230861

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Mathematical Foundations of Computer Science, Volume I is the first of two volumes presenting topics from mathematics (mostly discrete mathematics) which have proven relevant and useful to computer science. This volume treats basic topics, mostly of a set-theoretical nature (sets, functions and relations, partially ordered sets, induction, enumerability, and diagonalization) and illustrates the usefulness of mathematical ideas by presenting applications to computer science. Readers will find useful applications in algorithms, databases, semantics of programming languages, formal languages, theory of computation, and program verification. The material is treated in a straightforward, systematic, and rigorous manner. The volume is organized by mathematical area, making the material easily accessible to the upper-undergraduate students in mathematics as well as in computer science and each chapter contains a large number of exercises. The volume can be used as a textbook, but it will also be useful to researchers and professionals who want a thorough presentation of the mathematical tools they need in a single source. In addition, the book can be used effectively as supplementary reading material in computer science courses, particularly those courses which involve the semantics of programming languages, formal languages and automata, and logic programming.

Papildus informācija

Springer Book Archives
1 Elementary Set Theory.- 1.1 Introduction.- 1.2 Sets, Members,
Subsets.- 1.3 Building New Sets.- 1.4 Exercises and Supplements.- 1.5
Bibliographical Comments.- 2 Relations and Functions.- 2.1 Introduction.- 2.2
Relations.- 2.3 Functions.- 2.4 Sequences, Words, and Matrices.- 2.5 Images
of Sets Under Relations.- 2.6 Relations and Directed Graphs.- 2.7 Special
Classes of Relations.- 2.8 Equivalences and Partitions.- 2.9 General
Cartesian Products.- 2.10 Operations.- 2.11 Representations of Relations and
Graphs.- 2.12 Relations and Databases.- 2.13 Exercises and Supplements.- 2.14
Bibliographical Comments.- 3 Partially Ordered Sets.- 3.1 Introduction.- 3.2
Partial Orders and Hasse Diagrams.- 3.3 Special Elements of Partially Ordered
Sets.- 3.4 Chains.- 3.5 Duality.- 3.6 Constructing New Posets.- 3.7 Functions
and Posets.- 3.8 Complete Partial Orders.- 3.9 The Axiom of Choice and Zorns
Lemma.- 3.10 Exercises and Supplements.- 3.11 Bibliographical Comments.- 4
Induction.- 4.1 Introduction.- 4.2 Induction on the Natural Numbers.- 4.3
Inductively Defined Sets.- 4.4 Proof by Structural Induction.- 4.5 Recursive
Definitions of Functions.- 4.6 Constructors.- 4.7 Simultaneous Inductive
Definitions.- 4.8 Propositional Logic.- 4.9 Primitive Recursive and Partial
Recursive Functions.- 4.10 Grammars.- 4.11 Peanos Axioms.- 4.12 Well-Founded
Sets and Induction.- 4.13 Fixed Points and Fixed Point Induction.- 4.14
Exercises and Supplements.- 4.15 Bibliographical Comments.- 5 Enumerability
and Diagonalization.- 5.1 Introduction.- 5.2 Equinumerous Sets.- 5.3
Countable and Uncountable Sets.- 5.4 Enumerating Programs.- 5.5 Abstract
Families of Functions.- 5.6 Exercises and Supplements.- 5.7 Bibliographical
Comments.- References.