Atjaunināt sīkdatņu piekrišanu

Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration Softcover reprint of hardcover 1st ed. 2009 [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 350 pages, height x width: 235x155 mm, weight: 546 g, 134 Illustrations, color; 49 Illustrations, black and white; X, 350 p. 183 illus., 134 illus. in color., 1 Paperback / softback
  • Sērija : Mathematics and Visualization
  • Izdošanas datums: 22-Oct-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642064140
  • ISBN-13: 9783642064142
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 350 pages, height x width: 235x155 mm, weight: 546 g, 134 Illustrations, color; 49 Illustrations, black and white; X, 350 p. 183 illus., 134 illus. in color., 1 Paperback / softback
  • Sērija : Mathematics and Visualization
  • Izdošanas datums: 22-Oct-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642064140
  • ISBN-13: 9783642064142

Here is a summary of cutting-edge research ideas on visualization presented at a key workshop in Banff, Canada, where new algorithms were discussed based on sophisticated modeling techniques that permit the extraction of high-level topological structures.



Visualization is one of the most active and exciting areas of Mathematics and Computing Science, and indeed one which is only beginning to mature. Current visualization algorithms break down for very large data sets. While present approaches use multi-resolution ideas, future data sizes will not be handled that way. New algorithms based on sophisticated mathematical modeling techniques must be devised which will permit the extraction of high-level topological structures that can be visualized.

For these reasons a workshop was organized at the Banff International Research Station, focused specifically on mathematical issues. A primary objective of the workshop was to gather together a diverse set of researchers in the mathematical areas relevant to the recent advances in order to discuss the research challenges facing this field in the next several years. The workshop was organized into five different thrusts: - Topology and Discrete Methods; - Signal and Geometry Processing; - Partial Differential Equations; - Data Approximation Techniques; - Massive Data Applications. This book presents a summary of the research ideas presented at this workshop.

Maximizing Adaptivity in Hierarchical Topological Models Using
Cancellation Trees.- The TOPORRERY: computation and presentation of
multi-resolution topology.- Isocontour based Visualization of Time-varying
Scalar Fields.- DeBruijn Counting for Visualization Algorithms.- Topological
Methods for Visualizing Vortical Flows.- Stability and Computation of Medial
Axes - a State-of-the-Art Report.- Local Geodesic Parametrization: an Ants
Perspective.- Tensor-Fields Visualization Using a Fabric-like Texture Applied
to Arbitrary Two-dimensional Surfaces.- Flow Visualization via Partial
Differential Equations.- Iterative Twofold Line Integral Convolution for
Texture-Based Vector Field Visualization.- Constructing 3D Elliptical
Gaussians for Irregular Data.- From Sphere Packing to the Theory of Optimal
Lattice Sampling.- Reducing Interpolation Artifacts by Globally Fairing
Contours.- Time- and Space-efficient Error Calculation for Multiresolution
Direct Volume Rendering.- Massive Data Visualization: A Survey.- Compression
and Occlusion Culling for Fast Isosurface Extraction from Massive Datasets.-
Volume Visualization of Multiple Alignment of Large Genomic DNA.- Model-based
Visualization - Computing Perceptually Optimal Visualizations.