Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics

  • Formāts: EPUB+DRM
  • Sērija : Universitext
  • Izdošanas datums: 06-Dec-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319684390
  • Formāts - EPUB+DRM
  • Cena: 94,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Universitext
  • Izdošanas datums: 06-Dec-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319684390

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa.

The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification.

This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of differentiable manifolds and special relativity is required, summarized in the appendix.

Recenzijas

Assuming an introductory course on differential geometry and some basic knowledge of special relativity, both of which are summarized in the appendices, the book expounds the mathematical background behind the well-established standard model of modern particle and high energy physics I believe that the book will be a standard textbook on the standard model for mathematics-oriented students. (Hirokazu Nishimura, zbMATH 1390.81005)

PART I Mathematical Foundations
1 Lie Groups and Lie Algebras: Basic Concepts
3(80)
1.1 Topological Groups and Lie Groups
5(15)
1.2 Linear Groups and Symmetry Groups of Vector Spaces
20(13)
1.3 Homomorphisms of Lie Groups
33(2)
1.4 Lie Algebras
35(4)
1.5 From Lie Groups to Lie Algebras
39(13)
1.6 *From Lie Subalgebras to Lie Subgroups
52(3)
1.7 The Exponential Map
55(12)
1.8 *Cartan's Theorem on Closed Subgroups
67(9)
1.9 Exercises for Chap. 1
76(7)
2 Lie Groups and Lie Algebras: Representations and Structure Theory
83(44)
2.1 Representations
84(22)
2.2 Invariant Metrics on Lie Groups
106(2)
2.3 The Killing Form
108(2)
2.4 *Semisimple and Compact Lie Algebras
110(7)
2.5 * Ad-Invariant Scalar Products on Compact Lie Groups
117(3)
2.6 *Homotopy Groups of Lie Groups
120(2)
2.7 Exercises for Chap. 2
122(5)
3 Group Actions
127(66)
3.1 Transformation Groups
128(1)
3.2 Definition and First Properties of Group Actions
129(7)
3.3 Examples of Group Actions
136(5)
3.4 Fundamental Vector Fields
141(6)
3.5 The Maurer-Cartan Form and the Differential of a Smooth Group Action
147(2)
3.6 Left or Right Actions?
149(1)
3.7 `Quotient Spaces
150(12)
3.8 * Homogeneous Spaces
162(6)
3.9 *Stiefel and Grassmann Manifolds
168(2)
3.10 * The Exceptional Lie Group G2
170(8)
3.11 *Godement's Theorem on the Manifold Structure of Quotient Spaces
178(7)
3.12 Exercises for Chap. 3
185(8)
4 Fibre Bundles
193(64)
4.1 General Fibre Bundles
195(12)
4.2 Principal Fibre Bundles
207(14)
4.3 * Formal Bundle Atlases
221(2)
4.4 *Frame Bundles
223(2)
4.5 Vector Bundles
225(8)
4.6 The Clutching Construction
233(4)
4.7 Associated Vector Bundles
237(12)
4.8 Exercises for Chap. 4
249(8)
5 Connections and Curvature
257(62)
5.1 Distributions and Connections
258(3)
5.2 Connection 1-Forms
261(4)
5.3 Gauge Transformations
265(5)
5.4 Local Connection 1-Forms and Gauge Transformations
270(3)
5.5 Curvature
273(5)
5.6 Local Curvature 2-Forms
278(7)
5.7 `Generalized Electric and Magnetic Fields on Minkowski Spacetime of Dimension 4
285(1)
5.8 Parallel Transport
286(3)
5.9 The Covariant Derivative on Associated Vector Bundles
289(7)
5.10 `Parallel Transport and Path-Ordered Exponentials
296(5)
5.11 `Holonomy and Wilson Loops
301(1)
5.12 The Exterior Covariant Derivative
302(6)
5.13 Forms with Values in Ad(P)
308(3)
5.14 *A Second and Third Version of the Bianchi Identity
311(1)
5.15 Exercises for Chap. 5
312(7)
6 Spinors
319(82)
6.1 The Pseudo-Orthogonal Group O(s, t) of Indefinite Scalar Products
320(7)
6.2 Clifford Algebras
327(8)
6.3 The Clifford Algebras for the Standard Symmetric Bilinear Forms
335(11)
6.4 The Spinor Representation
346(2)
6.5 The Spin Groups
348(11)
6.6 *Majorana Spinors
359(4)
6.7 `Spin Invariant Scalar Products
363(10)
6.8 Explicit Formulas for Minkowski Spacetime of Dimension 4
373(3)
6.9 Spin Structures and Spinor Bundles
376(7)
6.10 The Spin Covariant Derivative
383(6)
6.11 Twisted Spinor Bundles
389(3)
6.12 Twisted Chiral Spinors
392(2)
6.13 Exercises for Chap. 6
394(7)
PART II The Standard Model of Elementary Particle Physics
7 The Classical Lagrangians of Gauge Theories
401(44)
7.1 Restrictions on the Set of Lagrangians
403(3)
7.2 The Hodge Star and the Codifferential
406(7)
7.3 The Yang-Mills Lagrangian
413(8)
7.4 Mathematical and Physical Conventions for Gauge Theories
421(3)
7.5 The Klein-Gordon and Higgs Lagrangians
424(5)
7.6 The Dirac Lagrangian
429(8)
7.7 Yukawa Couplings
437(1)
7.8 Dirac and Majorana Mass Terms
438(2)
7.9 Exercises for Chap. 7
440(5)
8 The Higgs Mechanism and the Standard Model
445(82)
8.1 The Higgs Field and Symmetry Breaking
446(12)
8.2 Mass Generation for Gauge Bosons
458(6)
8.3 Massive Gauge Bosons in the SU(2) × U(1)-Theory of the Electroweak Interaction
464(9)
8.4 The SU(3)-Theory of the Strong Interaction (QCD)
473(5)
8.5 The Particle Content of the Standard Model
478(17)
8.6 Interactions Between Fermions and Gauge Bosons
495(10)
8.7 Interactions Between Higgs Bosons and Gauge Bosons
505(7)
8.8 Mass Generation for Fermions in the Standard Model
512(10)
8.9 The Complete Lagrangian of the Standard Model
522(1)
8.10 Lepton and Baryon Numbers
522(2)
8.11 Exercises for Chap. 8
524(3)
9 Modern Developments and Topics Beyond the Standard Model
527(76)
9.1 Flavour and Chiral Symmetry
527(5)
9.2 Massive Neutrinos
532(14)
9.3 C, P and CP Violation
546(11)
9.4 Vacuum Polarization and Running Coupling Constants
557(7)
9.5 Grand Unified Theories
564(26)
9.6 A Short Introduction to the Minimal Supersymmetric Standard Model (MSSM)
590(8)
9.7 Exercises for Chap. 9
598(5)
PART III Appendix
A Background on Differentiable Manifolds
603(1)
A.1 Manifolds
603(13)
A.2 Tensors and Forms
616(9)
B Background on Special Relativity and Quantum Field Theory
625(1)
B.1 Basics of Special Relativity
625(3)
B.2 A Short Introduction to Quantum Field Theory
628(13)
References 641(6)
Index 647
Mark Hamilton has worked as a lecturer and interim professor at the University of Stuttgart and the Ludwig-Maximilian University of Munich. His research focus lies on geometric topology and mathematical physics, in particular, the differential topology of 4-manifolds and Seiberg-Witten theory.