Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mathematical Methods in Data Science

(Professor, Zhengzhou University, China), (Arizona State University, USA)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 06-Jan-2023
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780443186806
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 203,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 06-Jan-2023
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780443186806
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Mathematical Methods in Data Science introduces a new approach based on network analysis to integrate big data into the framework of ordinary and partial differential equations for data analysis and prediction. The mathematics is accompanied with examples and problems arising in data science to demonstrate advanced mathematics, in particular, data-driven differential equations used. Chapters also cover network analysis, ordinary and partial differential equations based on recent published and unpublished results. Finally, the book introduces a new approach based on network analysis to integrate big data into the framework of ordinary and partial differential equations for data analysis and prediction.

There are a number of books on mathematical methods in data science. Currently, all these related books primarily focus on linear algebra, optimization and statistical methods. However, network analysis, ordinary and partial differential equation models play an increasingly important role in data science. With the availability of unprecedented amount of clinical, epidemiological and social COVID-19 data, data-driven differential equation models have become more useful for infection prediction and analysis.

  • Combines a broad spectrum of mathematics, including linear algebra, optimization, network analysis and ordinary and partial differential equations for data science
  • Written by two researchers who are actively applying mathematical and statistical methods as well as ODE and PDE for data analysis and prediction
  • Highly interdisciplinary, with content spanning mathematics, data science, social media analysis, network science, financial markets, and more
  • Presents a wide spectrum of topics in a logical order, including probability, linear algebra, calculus and optimization, networks, ordinary differential and partial differential equations

Recenzijas

"This book is an interesting introduction to mathematical methods for data science. It covers ordinary differential equations and partial differential equations, and this is a main feature that distinguishes the book from others. The first chapters start gently to build some mathematical background on linear algebra, probability, calculus, and optimization. In the fourth chapter, the book presents real-world use of these mathematical tools for network analysis. Then the book goes deeper into the subject and discusses the methodologies of ordinary differential equations and partial differential equations, as well as their applications. Overall, the book is suitable for advanced undergraduate and beginning graduate students interested in mathematical data science methods." --Liangzu Peng, zbMATHOpen

1. Linear Algebra
2. Probability
3. Calculus and Optimization
4. Network Analysis
5. Ordinary Differential Equations
6. Partial Differential Equations

She received the Ph.D. degree in applied mathematics from Beijing Institute of Technology, Beijing, China, in 2004. Her research interests include data science, applied mathematics, and applied statistics. She conducted five Projects of National Nature Science Foundation of China, one Alexander von Humboldt Fellowship for Experienced Researcher, and five Provincial Projects. She has published numerous articles in scholarly journals, such as Acta Mater.Appl. Phys. Lett.IEEE Trans. SMCInfor. Sci.J. Stat. Phys.J. Nonlinear Sci. Phys. Rev. BPhys. Rev. ESci. China Math.Sci. China Phys. and Sci. China Mater., etc. He completed his doctorate in mathematics, while also earning a master's degree in computer science at Michigan State University in 1997. He worked as a full-time software engineer in industry for almost ten years before joining Arizona State University. Dr. Wangs research interests include applied mathematics, data science, differential equations, online social networks. He has published numerous articles in scholarly journals and a book entitled, Modeling Information Diffusion in Online Social Networks with Partial Differential Equations”, Springer, 2020. Recently he developed and taught a course, Mathematical Methods in Data Science, at Arizona State University.