Preface |
|
xiii | |
|
|
1 | (63) |
|
|
1 | (10) |
|
1.1.1 One Independent Variable |
|
|
1 | (4) |
|
1.1.2 Many Independent Variables |
|
|
5 | (1) |
|
1.1.3 Many Dependent Variables |
|
|
6 | (5) |
|
1.2 Inverse Function Theorem |
|
|
11 | (2) |
|
1.3 Functional Dependence |
|
|
13 | (5) |
|
|
18 | (2) |
|
|
20 | (11) |
|
1.5.1 Unconstrained Optimization |
|
|
21 | (1) |
|
1.5.2 Calculus of Variations |
|
|
22 | (6) |
|
1.5.3 Constrained Optimization: Lagrange Multipliers |
|
|
28 | (3) |
|
1.6 Non-Cartesian Coordinate Transformations |
|
|
31 | (33) |
|
1.6.1 Jacobian Matrices and Metric Tensors |
|
|
34 | (9) |
|
1.6.2 Co variance and Contravariance |
|
|
43 | (6) |
|
1.6.3 Differentiation and Christoffel Symbols |
|
|
49 | (4) |
|
1.6.4 Summary of Identities |
|
|
53 | (1) |
|
1.6.5 Nonorthogonal Coordinates: Alternate Approach |
|
|
54 | (3) |
|
1.6.6 Orthogonal Curvilinear Coordinates |
|
|
57 | (2) |
|
|
59 | (5) |
|
2 Vectors and Tensors in Cartesian Coordinates |
|
|
64 | (51) |
|
|
64 | (17) |
|
2.1.1 Cartesian Index Notation |
|
|
64 | (3) |
|
|
67 | (5) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (8) |
|
|
81 | (3) |
|
2.2.1 Definitions and Properties |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
2.2.4 Scalar Triple Product |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (8) |
|
|
84 | (1) |
|
2.3.2 Differential Geometry of Curves |
|
|
84 | (8) |
|
|
92 | (2) |
|
|
94 | (1) |
|
2.6 Differential Operators |
|
|
94 | (6) |
|
|
95 | (3) |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (1) |
|
|
100 | (4) |
|
|
100 | (3) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (11) |
|
|
104 | (1) |
|
|
105 | (3) |
|
|
108 | (1) |
|
|
108 | (2) |
|
2.8.5 Extended Leibniz Rule |
|
|
110 | (1) |
|
|
110 | (5) |
|
3 First-Order Ordinary Differential Equations |
|
|
115 | (31) |
|
|
115 | (2) |
|
3.2 Separation of Variables |
|
|
117 | (1) |
|
3.3 Homogeneous Equations |
|
|
118 | (2) |
|
|
120 | (2) |
|
|
122 | (1) |
|
3.6 General Linear Solution |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (3) |
|
|
129 | (2) |
|
3.9.1 Dependent Variable y Absent |
|
|
129 | (1) |
|
3.9.2 Independent Variable x Absent |
|
|
129 | (2) |
|
3.10 Factorable Equations |
|
|
131 | (1) |
|
3.11 Uniqueness and Singular Solutions |
|
|
132 | (2) |
|
|
134 | (2) |
|
|
136 | (3) |
|
3.14 Solution by Taylor Series |
|
|
139 | (1) |
|
3.15 Delay Differential Equations |
|
|
140 | (6) |
|
|
141 | (5) |
|
4 Linear Ordinary Differential Equations |
|
|
146 | (73) |
|
4.1 Linearity and Linear Independence |
|
|
146 | (3) |
|
4.2 Complementary Functions |
|
|
149 | (7) |
|
4.2.1 Constant Coefficients |
|
|
149 | (5) |
|
4.2.2 Variable Coefficients |
|
|
154 | (2) |
|
|
156 | (13) |
|
4.3.1 Undetermined Coefficients |
|
|
156 | (2) |
|
4.3.2 Variation of Parameters |
|
|
158 | (2) |
|
|
160 | (6) |
|
|
166 | (3) |
|
4.4 Sturm-Liouville Analysis |
|
|
169 | (24) |
|
4.4.1 General Formulation |
|
|
170 | (1) |
|
4.4.2 Adjoint of Differential Operators |
|
|
171 | (4) |
|
|
175 | (4) |
|
4.4.4 Legendre Differential Equation |
|
|
179 | (3) |
|
|
182 | (3) |
|
|
185 | (3) |
|
|
188 | (1) |
|
4.4.8 Bessel Differential Equation |
|
|
189 | (4) |
|
4.5 Fourier Series Representation |
|
|
193 | (7) |
|
|
200 | (1) |
|
4.7 Discrete and Continuous Spectra |
|
|
201 | (1) |
|
|
202 | (5) |
|
4.9 Linear Difference Equations |
|
|
207 | (12) |
|
|
211 | (8) |
|
|
219 | (60) |
|
5.1 Function Approximation |
|
|
220 | (4) |
|
|
220 | (2) |
|
|
222 | (2) |
|
|
224 | (14) |
|
5.2.1 Functional Equations |
|
|
224 | (2) |
|
5.2.2 First-Order Differential Equations |
|
|
226 | (4) |
|
5.2.3 Second-Order Differential Equations |
|
|
230 | (7) |
|
5.2.4 Higher-Order Differential Equations |
|
|
237 | (1) |
|
5.3 Taylor Series Solution |
|
|
238 | (2) |
|
|
240 | (28) |
|
5.4.1 Polynomial and Transcendental Equations |
|
|
240 | (4) |
|
5.4.2 Regular Perturbations |
|
|
244 | (3) |
|
5.4.3 Strained Coordinates |
|
|
247 | (6) |
|
|
253 | (3) |
|
|
256 | (5) |
|
|
261 | (2) |
|
|
263 | (3) |
|
5.4.8 Solutions of the Type es(x) |
|
|
266 | (1) |
|
5.4.9 Repeated Substitution |
|
|
267 | (1) |
|
5.5 Asymptotic Methods for Integrals |
|
|
268 | (11) |
|
|
271 | (8) |
|
|
279 | (111) |
|
|
279 | (1) |
|
|
280 | (3) |
|
|
283 | (21) |
|
|
288 | (9) |
|
|
297 | (7) |
|
6.4 Gram-Schmidt Procedure |
|
|
304 | (3) |
|
6.5 Projection of Vectors onto New Bases |
|
|
307 | (23) |
|
|
307 | (6) |
|
|
313 | (1) |
|
|
314 | (10) |
|
|
324 | (6) |
|
6.6 Parseval's Equation, Convergence, and Completeness |
|
|
330 | (1) |
|
|
330 | (9) |
|
|
332 | (2) |
|
|
334 | (3) |
|
|
337 | (2) |
|
6.8 Eigenvalues and Eigenvectors |
|
|
339 | (11) |
|
|
350 | (4) |
|
|
354 | (5) |
|
6.11 Method of Weighted Residuals |
|
|
359 | (12) |
|
6.12 Ritz and Rayleigh-Ritz Methods |
|
|
371 | (2) |
|
6.13 Uncertainty Quantification Via Polynomial Chaos |
|
|
373 | (17) |
|
|
379 | (11) |
|
|
390 | (90) |
|
|
390 | (1) |
|
7.2 Matrix Fundamentals and Operations |
|
|
391 | (8) |
|
7.2.1 Determinant and Rank |
|
|
391 | (1) |
|
|
392 | (1) |
|
7.2.3 Column, Row, and Left and Right Null Spaces |
|
|
392 | (2) |
|
7.2.4 Matrix Multiplication |
|
|
394 | (2) |
|
7.2.5 Definitions and Properties |
|
|
396 | (3) |
|
|
399 | (11) |
|
|
400 | (3) |
|
|
403 | (2) |
|
7.3.3 Simultaneously Over- and Underconstrained |
|
|
405 | (1) |
|
|
406 | (2) |
|
7.3.5 Fredholm Alternative |
|
|
408 | (2) |
|
7.4 Eigenvalues and Eigenvectors |
|
|
410 | (5) |
|
|
410 | (4) |
|
7.4.2 Generalized in the Second Sense |
|
|
414 | (1) |
|
7.5 Matrices as Linear Mappings |
|
|
415 | (1) |
|
|
416 | (3) |
|
7.7 Orthogonal and Unitary Matrices |
|
|
419 | (7) |
|
|
422 | (1) |
|
7.7.2 Householder Reflection |
|
|
423 | (3) |
|
7.8 Discrete Fourier Transforms |
|
|
426 | (6) |
|
7.9 Matrix Decompositions |
|
|
432 | (24) |
|
|
432 | (2) |
|
|
434 | (1) |
|
|
435 | (4) |
|
|
439 | (2) |
|
|
441 | (6) |
|
7.9.6 Jordan Canonical Form |
|
|
447 | (2) |
|
|
449 | (1) |
|
|
450 | (3) |
|
|
453 | (3) |
|
|
456 | (1) |
|
|
456 | (2) |
|
|
458 | (3) |
|
|
459 | (1) |
|
|
460 | (1) |
|
|
461 | (1) |
|
|
462 | (2) |
|
|
464 | (3) |
|
7.15 Moore-Penrose Pseudoinverse |
|
|
467 | (13) |
|
|
470 | (10) |
|
8 Linear Integral Equations |
|
|
480 | (17) |
|
|
480 | (1) |
|
8.2 Homogeneous Fredholm Equations |
|
|
481 | (6) |
|
|
481 | (1) |
|
|
482 | (5) |
|
8.3 Inhomogeneous Fredholm Equations |
|
|
487 | (3) |
|
|
487 | (2) |
|
|
489 | (1) |
|
|
490 | (1) |
|
8.5 Fourier Series Projection |
|
|
490 | (7) |
|
|
495 | (2) |
|
|
497 | (88) |
|
|
497 | (4) |
|
|
501 | (2) |
|
|
501 | (1) |
|
|
502 | (1) |
|
|
502 | (1) |
|
9.2.4 Weierstrass Function |
|
|
503 | (1) |
|
9.2.5 Mandelbrot and Julia Sets |
|
|
503 | (1) |
|
9.3 Introduction to Differential Systems |
|
|
503 | (9) |
|
|
504 | (4) |
|
9.3.2 Nonautonomous Example |
|
|
508 | (2) |
|
|
510 | (2) |
|
9.4 High-Order Scalar Differential Equations |
|
|
512 | (2) |
|
|
514 | (14) |
|
9.5.1 Inhomogeneous with Variable Coefficients |
|
|
514 | (1) |
|
9.5.2 Homogeneous with Constant Coefficients |
|
|
515 | (10) |
|
9.5.3 Inhomogeneous with Constant Coefficients |
|
|
525 | (3) |
|
|
528 | (17) |
|
|
529 | (3) |
|
|
532 | (1) |
|
9.6.3 Heteroclinic and Homoclinic Trajectories |
|
|
533 | (6) |
|
9.6.4 Nonlinear Forced Mass-Spring-Damper |
|
|
539 | (2) |
|
|
541 | (2) |
|
9.6.6 Hamiltonian Systems |
|
|
543 | (2) |
|
9.7 Differential-Algebraic Systems |
|
|
545 | (4) |
|
|
545 | (3) |
|
|
548 | (1) |
|
9.8 Fixed Points at Infinity |
|
|
549 | (5) |
|
|
549 | (4) |
|
|
553 | (1) |
|
|
554 | (5) |
|
|
555 | (1) |
|
|
556 | (1) |
|
|
557 | (1) |
|
|
558 | (1) |
|
9.10 Projection of Partial Differential Equations |
|
|
559 | (3) |
|
|
562 | (23) |
|
|
563 | (2) |
|
9.11.2 Nonlinear Stability: Center Manifold Projection |
|
|
565 | (4) |
|
9.11.3 Transition to Chaos |
|
|
569 | (4) |
|
|
573 | (12) |
|
|
585 | (18) |
|
A.1 Roots of Polynomial Equations |
|
|
585 | (4) |
|
|
585 | (1) |
|
|
585 | (1) |
|
|
586 | (1) |
|
|
587 | (2) |
|
|
589 | (1) |
|
|
589 | (1) |
|
|
590 | (1) |
|
|
591 | (1) |
|
A.5 Trigonometric Relations |
|
|
591 | (2) |
|
|
593 | (1) |
|
|
593 | (5) |
|
|
593 | (1) |
|
|
594 | (1) |
|
A.7.3 Sine, Cosine, and Exponential Integral |
|
|
594 | (1) |
|
|
595 | (1) |
|
|
596 | (1) |
|
A.7.6 Dirac δ and Heaviside |
|
|
596 | (2) |
|
|
598 | (5) |
|
|
598 | (1) |
|
A.8.2 Polar and Cartesian Representations |
|
|
599 | (1) |
|
|
600 | (3) |
Bibliography |
|
603 | (6) |
Index |
|
609 | |