|
|
|
|
3 | (62) |
|
|
3 | (10) |
|
1.1.1 Addition and Multiplication of Integers |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (4) |
|
|
13 | (5) |
|
1.2.1 Napier's Idea of Logarithm |
|
|
13 | (2) |
|
1.2.2 Briggs' Common Logarithm |
|
|
15 | (3) |
|
1.3 A Peculiar Number Called e |
|
|
18 | (4) |
|
1.3.1 The Unique Property of e |
|
|
18 | (1) |
|
1.3.2 The Natural Logarithm |
|
|
19 | (2) |
|
1.3.3 Approximate Value of e |
|
|
21 | (1) |
|
1.4 The Exponential Function as an Infinite Series |
|
|
22 | (3) |
|
|
22 | (2) |
|
1.4.2 The Limiting Process Representing e |
|
|
24 | (1) |
|
1.4.3 The Exponential Function e* |
|
|
24 | (1) |
|
1.5 Unification of Algebra and Geometry |
|
|
25 | (4) |
|
1.5.1 The Remarkable Euler Formula |
|
|
25 | (1) |
|
|
26 | (3) |
|
1.6 Polar Form of Complex Numbers |
|
|
29 | (19) |
|
1.6.1 Powers and Roots of Complex Numbers |
|
|
31 | (3) |
|
1.6.2 Trigonometry and Complex Numbers |
|
|
34 | (7) |
|
1.6.3 Geometry and Complex Numbers |
|
|
41 | (7) |
|
1.7 Elementary Functions of Complex Variable |
|
|
48 | (17) |
|
1.7.1 Exponential and Trigonometric Functions of z |
|
|
48 | (2) |
|
1.7.2 Hyperbolic Functions of z |
|
|
50 | (2) |
|
1.7.3 Logarithm and General Power of z |
|
|
52 | (6) |
|
1.7.4 Inverse Trigonomeric and Hyperbolic Functions |
|
|
58 | (3) |
|
|
61 | (4) |
|
|
65 | (50) |
|
|
65 | (22) |
|
2.1.1 Complex Function as Mapping Operation |
|
|
66 | (1) |
|
2.1.2 Differentiation of a Complex Function |
|
|
67 | (2) |
|
2.1.3 Cauchy-Riemann Conditions |
|
|
69 | (3) |
|
2.1.4 Cauchy-Riemann Equations in Polar Coordinates |
|
|
72 | (2) |
|
2.1.5 Analytic Function as a Function of z Alone |
|
|
74 | (5) |
|
2.1.6 Analytic Function and Laplace's Equation |
|
|
79 | (8) |
|
|
87 | (5) |
|
2.2.1 Line Integral of a Complex Function |
|
|
87 | (2) |
|
2.2.2 Parametric Form of Complex Line Integral |
|
|
89 | (3) |
|
2.3 Cauchy's Integral Theorem |
|
|
92 | (7) |
|
|
92 | (2) |
|
2.3.2 Cauchy-Goursat Theorem |
|
|
94 | (2) |
|
2.3.3 Fundamental Theorem of Calculus |
|
|
96 | (3) |
|
2.4 Consequences of Cauchy's Theorem |
|
|
99 | (16) |
|
2.4.1 Principle of Deformation of Contours |
|
|
99 | (1) |
|
2.4.2 The Cauchy Integral Formula |
|
|
100 | (2) |
|
2.4.3 Derivatives of Analytic Function |
|
|
102 | (7) |
|
|
109 | (6) |
|
3 Complex Series and Theory of Residues |
|
|
115 | (66) |
|
3.1 A Basic Geometric Series |
|
|
115 | (1) |
|
|
116 | (9) |
|
3.2.1 The Complex Taylor Series |
|
|
116 | (1) |
|
3.2.2 Convergence of Taylor Series |
|
|
117 | (2) |
|
3.2.3 Analytic Continuation |
|
|
119 | (2) |
|
3.2.4 Uniqueness of Taylor Series |
|
|
121 | (4) |
|
|
125 | (11) |
|
3.3.1 Uniqueness of Laurent Series |
|
|
129 | (7) |
|
|
136 | (14) |
|
|
136 | (1) |
|
3.4.2 Definition of the Residue |
|
|
137 | (1) |
|
3.4.3 Methods of Finding Residues |
|
|
138 | (4) |
|
3.4.4 Cauchy's Residue Theorem |
|
|
142 | (1) |
|
3.4.5 Second Residue Theorem |
|
|
143 | (7) |
|
3.5 Evaluation of Real Integrals with Residues |
|
|
150 | (31) |
|
3.5.1 Integrals of Trigonometric Functions |
|
|
150 | (4) |
|
3.5.2 Improper Integrals I: Closing the Contour with a Semicircle at Infinity |
|
|
154 | (3) |
|
3.5.3 Fourier Integral and Jordan's Lemma |
|
|
157 | (6) |
|
3.5.4 Improper Integrals II: Closing the Contour with Rectangular and Pie-Shaped Contour |
|
|
163 | (5) |
|
3.5.5 Integration Along a Branch Cut |
|
|
168 | (3) |
|
3.5.6 Principal Value and Indented Path Integrals |
|
|
171 | (5) |
|
|
176 | (5) |
|
|
181 | (112) |
|
4.1 Examples of Problems Solved by Conformal Mappings |
|
|
182 | (23) |
|
4.2 Invariance of the Laplace Equation |
|
|
205 | (3) |
|
|
208 | (4) |
|
|
212 | (6) |
|
|
218 | (14) |
|
4.5.1 Irrotation Flow and Velocity Potential |
|
|
219 | (3) |
|
4.5.2 Incompressibility of the Fluid |
|
|
222 | (2) |
|
4.5.3 Stream Function and Stream Lines |
|
|
224 | (5) |
|
|
229 | (3) |
|
4.6 The Joukowski Transformation |
|
|
232 | (7) |
|
4.6.1 Properties of the Joukowski Transformation |
|
|
233 | (2) |
|
|
235 | (4) |
|
4.7 The Mcibius Transformation |
|
|
239 | (35) |
|
4.7.1 Linear Transformation |
|
|
240 | (3) |
|
|
243 | (12) |
|
4.7.3 General Bilinear Transformation |
|
|
255 | (6) |
|
4.7.4 Some Properties of Bilinear Transformation |
|
|
261 | (3) |
|
4.7.5 Mapping Two Distinct Circles into Concentric Circles |
|
|
264 | (10) |
|
4.8 The Schwarz-Christoffel Transformation |
|
|
274 | (19) |
|
4.8.1 Formulation of the Schwarz-Christoffel Transformation |
|
|
275 | (4) |
|
4.8.2 Convention Regarding the Polygon |
|
|
279 | (1) |
|
|
280 | (5) |
|
|
285 | (8) |
|
|
|
5 Linear Algebra and Vector Space |
|
|
293 | (44) |
|
5.1 Linear System of Equations |
|
|
294 | (13) |
|
|
294 | (3) |
|
5.1.2 Gaussian Elimination |
|
|
297 | (5) |
|
|
302 | (3) |
|
5.1.4 Geometry and Linear Equations |
|
|
305 | (2) |
|
|
307 | (30) |
|
5.2.1 Definition of Vector Space |
|
|
307 | (2) |
|
5.2.2 Dot Product and Length of a Vector |
|
|
309 | (2) |
|
5.2.3 Essence of Finite Dimensional Vector Space |
|
|
311 | (17) |
|
5.2.4 Infinite Dimensional Function Space |
|
|
328 | (2) |
|
|
330 | (7) |
|
|
337 | (42) |
|
6.1 Systems of Linear Equations |
|
|
337 | (6) |
|
6.1.1 Solution of Two Linear Equations |
|
|
337 | (2) |
|
6.1.2 Properties of Second-Order Determinants |
|
|
339 | (1) |
|
6.1.3 Solution of Three Linear Equations |
|
|
340 | (3) |
|
6.2 General Definition of Determinants |
|
|
343 | (9) |
|
|
343 | (3) |
|
6.2.2 Definition of a nth-Order Determinant |
|
|
346 | (2) |
|
|
348 | (1) |
|
6.2.4 Laplacian Development of Determinants by a Row (or a Column) |
|
|
349 | (3) |
|
6.3 Properties of Determinants |
|
|
352 | (6) |
|
|
358 | (3) |
|
6.4.1 Nonhomogeneous Systems |
|
|
358 | (2) |
|
6.4.2 Homogeneous Systems |
|
|
360 | (1) |
|
6.5 Block Diagonal Determinants |
|
|
361 | (3) |
|
6.6 Laplacian Developments by Complementary Minors |
|
|
364 | (3) |
|
6.7 Multiplication of Determinants of the Same Order |
|
|
367 | (2) |
|
6.8 Differentiation of Determinants |
|
|
369 | (1) |
|
6.9 Determinants in Geometry |
|
|
370 | (9) |
|
|
374 | (5) |
|
|
379 | (44) |
|
|
379 | (7) |
|
|
379 | (1) |
|
7.1.2 Some Special Matrices |
|
|
380 | (2) |
|
|
382 | (2) |
|
7.1.4 Transpose of a Matrix |
|
|
384 | (2) |
|
7.2 Matrix Multiplication |
|
|
386 | (14) |
|
7.2.1 Product of Two Matrices |
|
|
386 | (4) |
|
7.2.2 Motivation of Matrix Multiplication |
|
|
390 | (1) |
|
7.2.3 Properties of Product Matrices |
|
|
391 | (5) |
|
7.2.4 Determinant of Matrix Product |
|
|
396 | (2) |
|
|
398 | (2) |
|
7.3 Systems of Linear Equations |
|
|
400 | (8) |
|
7.3.1 Gauss Elimination Method |
|
|
401 | (3) |
|
7.3.2 Existence and Uniqueness of Solutions of Linear Systems |
|
|
404 | (4) |
|
|
408 | (15) |
|
7.4.1 Non-singular Matrix |
|
|
408 | (1) |
|
7.4.2 Inverse Matrix by Cramer's Rule |
|
|
409 | (4) |
|
7.4.3 Inverse of Elementary Matrices |
|
|
413 | (2) |
|
7.4.4 Inverse Matrix by Gauss-Jordan Elimination |
|
|
415 | (2) |
|
|
417 | (6) |
|
8 Eigenvalue Problems of Matrices |
|
|
423 | (62) |
|
8.1 Eigenvalues and Eigenvectors |
|
|
423 | (12) |
|
|
423 | (8) |
|
8.1.2 Properties of Characteristic Polynomial |
|
|
431 | (3) |
|
8.1.3 Properties of Eigenvalues |
|
|
434 | (1) |
|
|
435 | (4) |
|
8.2.1 Hermitian Conjugation |
|
|
435 | (1) |
|
|
436 | (2) |
|
8.2.3 Gram-Schmidt Process |
|
|
438 | (1) |
|
8.3 Unitary Matrix and Orthogonal Matrix |
|
|
439 | (8) |
|
|
439 | (1) |
|
8.3.2 Properties of Unitary Matrix |
|
|
440 | (1) |
|
|
441 | (2) |
|
8.3.4 Independent Elements of an Orthogonal Matrix |
|
|
443 | (1) |
|
8.3.5 Orthogonal Transformation and Rotation Matrix |
|
|
444 | (3) |
|
|
447 | (9) |
|
8.4.1 Similarity Transformation |
|
|
447 | (3) |
|
8.4.2 Diagonalizing a Square Matrix |
|
|
450 | (3) |
|
|
453 | (3) |
|
8.5 Hermitian Matrix and Symmetric Matrix |
|
|
456 | (12) |
|
|
456 | (1) |
|
8.5.2 Eigenvalues of Hermitian Matrix |
|
|
456 | (2) |
|
8.5.3 Diagonalizing a Hermitian Matrix |
|
|
458 | (8) |
|
8.5.4 Simultaneous Diagonalization |
|
|
466 | (2) |
|
|
468 | (2) |
|
8.7 Functions of a Matrix |
|
|
470 | (15) |
|
8.7.1 Polynomial Functions of a Matrix |
|
|
470 | (2) |
|
8.7.2 Evaluating Matrix Functions by Diagonalization |
|
|
472 | (4) |
|
8.7.3 The Cayley-Hamilton Theorem |
|
|
476 | (4) |
|
|
480 | (5) |
References |
|
485 | (2) |
Index |
|
487 | |