|
|
xv | |
Preface |
|
xix | |
A SET THEORY |
|
1 | (74) |
|
Basic Concepts of Set Theory |
|
|
3 | (24) |
|
|
3 | (1) |
|
|
4 | (4) |
|
Set-theoretic identity and cardinality |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (4) |
|
Difference and complement |
|
|
15 | (2) |
|
|
17 | (10) |
|
|
23 | (4) |
|
|
27 | (12) |
|
Ordered pairs and Cartesian products |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (3) |
|
|
33 | (6) |
|
|
36 | (3) |
|
|
39 | (16) |
|
Reflexivity, symmetry, transitivity, and connectedness |
|
|
39 | (4) |
|
|
43 | (1) |
|
Properties of inverses and complements |
|
|
44 | (1) |
|
Equivalence relations and partitions |
|
|
45 | (2) |
|
|
47 | (8) |
|
|
51 | (4) |
|
|
55 | (20) |
|
Equivalent sets and cardinality |
|
|
55 | (3) |
|
|
58 | (4) |
|
|
62 | (8) |
|
|
70 | (5) |
|
|
71 | (4) |
Appendix A: Set-theoretic Reconstruction of Number Systems |
|
75 | (10) |
|
|
75 | (3) |
|
A.2 Extension to the set of all integers |
|
|
78 | (2) |
|
A.3 Extension to the set of all rational numbers |
|
|
80 | (1) |
|
A.4 Extension to the set of all real numbers |
|
|
81 | (4) |
|
|
83 | (2) |
B LOGIC AND FORMAL SYSTEMS |
|
85 | (152) |
|
Basic Concepts of Logic and Formal Systems |
|
|
87 | (10) |
|
Formal systems and models |
|
|
87 | (4) |
|
Natural languages and formal languages |
|
|
91 | (1) |
|
|
92 | (1) |
|
About statement logic and predicate logic |
|
|
93 | (4) |
|
|
97 | (38) |
|
|
97 | (2) |
|
Semantics: Truth values and truth tables |
|
|
99 | (5) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
Tautologies, contradictions and contingencies |
|
|
104 | (4) |
|
Logical equivalence, logical consequence and laws |
|
|
108 | (4) |
|
|
112 | (9) |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
121 | (14) |
|
|
128 | (7) |
|
|
135 | (44) |
|
|
135 | (5) |
|
|
140 | (6) |
|
Quantifier laws and prenex normal form |
|
|
146 | (6) |
|
|
152 | (11) |
|
|
163 | (5) |
|
Formal and informal proofs |
|
|
168 | (2) |
|
Informal style in mathematical proofs |
|
|
170 | (9) |
|
|
173 | (6) |
|
Formal Systems, Axiomatization, and Model Theory |
|
|
179 | (58) |
|
The syntactic side of formal systems |
|
|
179 | (4) |
|
|
179 | (4) |
|
Axiomatic systems and derivations |
|
|
183 | (7) |
|
Extended axiomatic systems |
|
|
186 | (4) |
|
|
190 | (2) |
|
Peano's axioms and proof by induction |
|
|
192 | (6) |
|
The semantic side of formal systems: model theory |
|
|
198 | (19) |
|
|
198 | (2) |
|
Consistency, completeness, and independence |
|
|
200 | (2) |
|
|
202 | (2) |
|
An elementary formal system |
|
|
204 | (2) |
|
Axioms for ordering relations |
|
|
206 | (5) |
|
Axioms for string concatenation |
|
|
211 | (3) |
|
Models for Peano's axioms |
|
|
214 | (1) |
|
Axiomatization of set theory |
|
|
215 | (2) |
|
|
217 | (20) |
|
An axiomatization of statement logic |
|
|
217 | (3) |
|
Consistency and independence proofs |
|
|
220 | (3) |
|
An axiomatization of predicate logic |
|
|
223 | (2) |
|
About completeness proofs |
|
|
225 | (2) |
|
|
227 | (1) |
|
Godel's incompleteness theorems |
|
|
228 | (1) |
|
|
229 | (3) |
|
|
232 | (5) |
Appendix B-I: Alternative Notations and Connectives |
|
237 | (2) |
Appendix B-II: Kleene's Three-Valued Logic |
|
239 | (6) |
|
|
243 | (2) |
C ALGEBRA |
|
245 | (68) |
|
Basic Concepts of Algebra |
|
|
247 | (8) |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
249 | (2) |
|
|
251 | (4) |
|
|
253 | (2) |
|
|
255 | (20) |
|
|
255 | (6) |
|
Subgroups, semigroups and monoids |
|
|
261 | (3) |
|
|
264 | (5) |
|
|
269 | (6) |
|
|
271 | (4) |
|
|
275 | (20) |
|
Posets, duality and diagrams |
|
|
275 | (3) |
|
Lattices, semilattices and sublattices |
|
|
278 | (5) |
|
|
283 | (2) |
|
|
285 | (3) |
|
Complemented, distributive and modular lattices |
|
|
288 | (7) |
|
|
293 | (2) |
|
Boolean and Heyting Algebras |
|
|
295 | (18) |
|
|
295 | (3) |
|
|
298 | (1) |
|
|
299 | (2) |
|
|
301 | (3) |
|
|
304 | (9) |
|
|
307 | (2) |
|
|
309 | (4) |
D ENGLISH AS A FORMAL LANGUAGE |
|
313 | (116) |
|
|
315 | (56) |
|
|
315 | (21) |
|
A compositional account of statement logic |
|
|
317 | (4) |
|
A compositional account of predicate logic |
|
|
321 | (10) |
|
Natural language and compositionality |
|
|
331 | (5) |
|
|
336 | (35) |
|
|
336 | (3) |
|
The syntax and semantics of λ-abstraction |
|
|
339 | (2) |
|
|
341 | (5) |
|
|
346 | (3) |
|
|
349 | (16) |
|
|
365 | (6) |
|
|
371 | (30) |
|
Determiners and quantifiers |
|
|
371 | (2) |
|
Conditions on quantifiers |
|
|
373 | (5) |
|
Properties of determiners and quantifiers |
|
|
378 | (10) |
|
|
388 | (4) |
|
Context and quantification |
|
|
392 | (9) |
|
|
397 | (4) |
|
|
401 | (28) |
|
|
401 | (6) |
|
|
407 | (5) |
|
Indices and accessibility relations |
|
|
412 | (9) |
|
|
421 | (4) |
|
|
425 | (4) |
|
|
427 | (2) |
E LANGUAGES, GRAMMARS, AND AUTOMATA |
|
429 | (130) |
|
|
431 | (22) |
|
Languages, grammars and automata |
|
|
431 | (4) |
|
|
435 | (2) |
|
|
437 | (7) |
|
|
438 | (1) |
|
|
439 | (2) |
|
|
441 | (3) |
|
|
444 | (4) |
|
|
448 | (3) |
|
|
451 | (2) |
|
Finite Automata, Regular Languages and Type 3 Grammars |
|
|
453 | (32) |
|
|
453 | (9) |
|
State diagrams of finite automata |
|
|
455 | (1) |
|
Formal definition of deterministic finite automata |
|
|
455 | (3) |
|
Non-deterministic finite automata |
|
|
458 | (2) |
|
Formal definition of non-deterministic finite automata |
|
|
460 | (1) |
|
Equivalence of deterministic and non-deterministic finite automata |
|
|
460 | (2) |
|
|
462 | (9) |
|
Pumping Theorem for fal's |
|
|
468 | (3) |
|
Type 3 grammars and finite automaton languages |
|
|
471 | (14) |
|
Properties of regular languages |
|
|
475 | (2) |
|
Inadequacy of right-linear grammars for natural languages |
|
|
477 | (3) |
|
|
480 | (5) |
|
Pushdown Automata, Context Free Grammars and Languages |
|
|
485 | (20) |
|
|
485 | (5) |
|
Context free grammars and languages |
|
|
490 | (2) |
|
Pumping Theorem for cfl's |
|
|
492 | (3) |
|
Closure properties of context free languages |
|
|
495 | (3) |
|
Decidability questions for context free languages |
|
|
498 | (3) |
|
Are natural languages context free? |
|
|
501 | (4) |
|
|
503 | (2) |
|
Turing Machines, Recursively Enumerable Languages and Type 0 Grammars |
|
|
505 | (22) |
|
|
505 | (7) |
|
|
508 | (4) |
|
Equivalent formulations of Turing machines |
|
|
512 | (1) |
|
Unrestricted grammars and Turing machines |
|
|
513 | (2) |
|
|
515 | (2) |
|
Recursive versus recursively enumerable sets |
|
|
517 | (1) |
|
The universal Turing machine |
|
|
518 | (2) |
|
The Halting Problem for Turing machines |
|
|
520 | (7) |
|
|
523 | (4) |
|
Linear Bounded Automata, Context Sensitive Languages and Type 1 Grammars |
|
|
527 | (6) |
|
|
527 | (2) |
|
Lba's and context sensitive grammars |
|
|
528 | (1) |
|
Context sensitive languages and recursive sets |
|
|
529 | (2) |
|
Closure and decision properties |
|
|
531 | (2) |
|
|
532 | (1) |
|
Languages Between Context Free and Context Sensitive |
|
|
533 | (26) |
|
|
534 | (12) |
|
|
540 | (6) |
|
|
546 | (1) |
|
|
547 | (6) |
|
Transformational Grammars |
|
|
553 | (6) |
Appendix E-I: The Chomsky Hierarchy |
|
559 | (4) |
Appendix E-II: Semantic Automata |
|
563 | (10) |
|
|
570 | (1) |
|
|
571 | (2) |
Solutions to Selected Exercises |
|
573 | (62) |
|
|
573 | (2) |
|
|
575 | (1) |
|
|
576 | (1) |
|
|
577 | (2) |
|
|
579 | (3) |
|
|
582 | (5) |
|
|
587 | (7) |
|
|
594 | (3) |
|
|
597 | (4) |
|
|
601 | (1) |
|
|
602 | (4) |
|
|
606 | (2) |
|
|
608 | (2) |
|
|
610 | (4) |
|
|
614 | (2) |
|
|
616 | (3) |
|
|
619 | (1) |
|
|
620 | (6) |
|
|
626 | (3) |
|
|
629 | (1) |
|
|
630 | (1) |
|
|
631 | (1) |
|
|
632 | (3) |
Bibliography |
|
635 | (12) |
Index |
|
647 | |