Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mathematical Methods of Physics: Problems with Solutions

  • Formāts: 360 pages
  • Izdošanas datums: 11-Oct-2024
  • Izdevniecība: Jenny Stanford Publishing
  • Valoda: eng
  • ISBN-13: 9781040117798
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 145,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 360 pages
  • Izdošanas datums: 11-Oct-2024
  • Izdevniecība: Jenny Stanford Publishing
  • Valoda: eng
  • ISBN-13: 9781040117798
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is an English translation of a classic collection of problems in mathematical methods of physics, which has been published multiple times in Russian and once in Spanish.



This book, translated from Russian, is a comprehensive guide to mathematical methods in physics, offering theoretical insights and problem-solving techniques. Authored by experienced physicists, it is suitable for self-study and has been effectively used in fields such as theoretical physics, plasma physics, and hydrodynamics. The English edition aims to equip readers with the skills to master modern mathematical methods applicable to different physical problems.

Recenzijas

An excellent collection of problems and their solutions with elements of theory to accompany the university course on mathematical methods of physics. It covers a broad variety of topics ranging from linear operators, differential and integral equations, special functions, and Green functions to group theory and their applications in physics. The book is recommended to students, PhD students, researchers, and teachers.

Prof. Boris Konopelchenko

University of Salento, Italy

1 Linear Operators

1.1 Finite Dimensional Space

1.2 Functionals and Generalized Functions

1.3 Hilbert Space and Completeness

1.4 Self-Adjoint Operators

1.5 Ket- and Bra- Vectors

2 Method of Characteristics

2.1 Linear First-Order PDE

2.2 Quasilinear Equation

2.3 System of Equations

3 Second-Order Linear Equations

3.1 Canonical Form

3.2 Curvilinear Coordinates

3.3 Separation of Variables

3.4 Fourier Method

4 Self-Similarity and Nonlinear Equations

4.1 Symmetry of Equations

4.2 Nonlinear Equations

5 Special Functions

5.1 Singular Points

5.2 Hypergeometric Functions

5.3 Orthogonal Polynomials

6 Asymptotic Methods

6.1 Asymptotic Power Series

6.2 A Laplace Integral

6.3 Method of Stationary Phase

6.4 Method of Steepest Descents

6.5 The Averaging Method

7 Greens Functions Method

7.1 Greens Functions

7.2 Continuous Spectrum

7.3 Resolvent

8 Integral Equations

8.1 Fredholm Equations

8.2 Degenerate Kernel

8.3 Symmetric Kernel

8.4 Inverse Problem for Schrödinger Operator

9 Groups and Representations

9.1 Groups

9.2 Representations

10 Continuous Groups

10.1 Lie Groups and Algebras

10.2 Representations of the Rotation Group

11 Group Theory in Physics

11.1 Molecular Oscillations

11.2 Level Splitting

11.3 Selection Rules

11.4 Invariant Tensors
Igor V. Kolokolov is a Russian physicist known for his work on magnetism, soft matter physics and statistical hydrodynamics. He is professor at the Physical Department at Higher School of Economics, Moscow, and Director of Landau Institute of Theoretical Physics, Chernogolovka, Russia.

Evgeny A. Kuznetsov is a Russian physicist known for his work on nonlinear physics, soliton stability theory, and Hamiltonian formalism for nonlinear waves. He is a member of the Russian Academy of Sciences (RAS), professor at the Moscow Institute of Physics and Technology, and a principal researcher at the Tamm Theoretical Physics Department of the Lebedev Physics Institute of the RAS.

Alexander I. Milstein is a Russian physicist, specialist in theoretical elementary particle physics, nuclear and atomic physics, head of the Theoretical Department at Budker Institute of Nuclear Physics, and professor at Novosibirsk State University (NSU).

Evgeny V. Podivilov is a Russian physicist known for his work on nonlinear optics and nonlinear interactions of waves in fibers. He is a professor at NSU and a principal researcher at the Institute of Automation and Electrometry of the RAS.

Alexander I. Chernykh holds a PhD in physics and mathematics and is engaged in numerical modeling. He has taught various subjects, including methods of mathematical physics, analytical mechanics, statistical physics, and general theory of relativity.

David A. Shapiro is a Russian physicist. He is professor at NSU and heads the Photonics Laboratory at the Institute of Automation and Electrometry of the RAS. His current research interests include fiber optics, nanophotonics, and plasma physics.

Elena G. Shapiro holds a PhD in physics and mathematics. In 1985, she became a member of the Institute of Automation and Electrometry of the RAS. She had been teaching undergraduate students at the Physics Department of NSU since 1988.