Atjaunināt sīkdatņu piekrišanu

On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor 2015 ed. [Hardback]

  • Formāts: Hardback, 231 pages, height x width: 235x155 mm, weight: 5029 g, 29 Illustrations, color; 159 Illustrations, black and white; XX, 231 p. 188 illus., 29 illus. in color., 1 Hardback
  • Sērija : Studies in Systems, Decision and Control 26
  • Izdošanas datums: 21-May-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319174908
  • ISBN-13: 9783319174907
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 231 pages, height x width: 235x155 mm, weight: 5029 g, 29 Illustrations, color; 159 Illustrations, black and white; XX, 231 p. 188 illus., 29 illus. in color., 1 Hardback
  • Sērija : Studies in Systems, Decision and Control 26
  • Izdošanas datums: 21-May-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319174908
  • ISBN-13: 9783319174907

This book introduces the basic fundamentals, models, emulators and analyses of mem-elements in the circuit theory with applications. The book starts reviewing the literature on mem-elements, models and their recent applications. It presents mathematical models, numerical results, circuit simulations, and experimental results for double-loop hysteresis behavior of mem-elements. The authors introduce a generalized memristor model in the fractional-order domain under different input and different designs for emulator-based mem-elements, with circuit and experimental results. The basic concept of memristive-based relaxation-oscillators in the circuit theory is also covered. The reader will moreover find in this book information on memristor-based multi-level digital circuits, memristor-based multi-level multiplier and memcapacitor-based oscillators and synaptic circuits.

Recenzijas

The book, organized on seven chapters, deals with the modeling, analysis and applications of memelements . The book is interesting and can be used by researchers interested in memelements from the theoretical point of view as well as for a number of practical applications. (Liviu Gora, zbMATH 1334.94003, 2016)

Among the numerous books and monographs published so far on the memristor, memcapacitor, and meminductor, the Radwan-Fouda book stands out as the most comprehensive, scholarly, and timely. The book has both depth and breadth it covers practically all aspects of memory circuit elements that have been published in the literature, including important contributions from the authors themselves. Each chapter is carefully organized, well-illustrated, and written pedagogically so even the uninitiated will find it to be eminently readable. The references are comprehensive and surprisingly up-to-date, including some obscure papers and several future papers that have not yet seen the light of day. Every serious researchers on memristors, memcapacitor, and meminductors will find this book indispensable.

Leon Chua

USA, Feb. 2015

1 Introduction 1(12)
1.1 Review of Basic Linear Circuit Elements
1(6)
1.1.1 Resistor
1(1)
1.1.2 Capacitor
2(1)
1.1.3 Inductor
3(1)
1.1.4 Fractional-Order Elements
4(3)
1.2 Memristor
7(1)
1.3 Historical Background of the Mem-Element
8(2)
1.4 Organization of the Book
10(1)
References
11(2)
2 Memristor: Models, Types, and Applications 13(38)
2.1 The Missing Element History
13(1)
2.2 HP Memristor
14(2)
2.3 Basic Memristor Fingerprints
16(1)
2.4 Memristor Models
16(7)
2.4.1 Linear Ion Drift Model
16(2)
2.4.2 Nonlinear Ion Drift Model
18(1)
2.4.3 Simmons Tunnel Barrier Model
18(1)
2.4.4 Threshold Adaptive Memristor Model
19(1)
2.4.5 Window Functions
19(4)
2.5 Mathematical Modeling of HP Memristor
23(4)
2.6 Mathematical Representations of Time-Invariant Memristor
27(5)
2.6.1 Extended Memristor
27(2)
2.6.2 Generic Memristor
29(1)
2.6.3 Ideal Memristor
29(3)
2.7 Memristor Implementation Types
32(2)
2.8 Memristor-Based Applications
34(12)
2.8.1 Analog Circuits
34(6)
2.8.2 Neuromorphic Circuits
40(1)
2.8.3 Chaotic System
40(3)
2.8.4 Digital Applications
43(3)
References
46(5)
3 Memristor Mathematical Models and Emulators 51(34)
3.1 Continuous Symmetrical Model
52(5)
3.1.1 Current-Controlled Memristor
53(1)
3.1.2 Voltage-Controlled Memristor
53(2)
3.1.3 Circuit Emulators
55(2)
3.2 Continuous Nonsymmetrical Model
57(4)
3.2.1 Experimental Results
59(2)
3.3 Switching Model
61(2)
3.4 Fractional-Order Model
63(6)
3.4.1 Fractional-Order Elements Relations
63(1)
3.4.2 Fractional-Order Memristor Model
64(1)
3.4.3 Step Input Voltage
65(2)
3.4.4 Sinusoidal Input
67(2)
3.5 Memristor Emulation Circuits for Analog Applications
69(14)
3.5.1 Simple COTS Realization of Floating Memristor
69(6)
3.5.2 MOS Realization of Memristor Emulator
75(8)
References
83(2)
4 Memristor-Based Relaxation Oscillator Circuits 85(36)
4.1 Introduction
85(1)
4.2 Voltage Controlled Oscillators
86(12)
4.2.1 R-M Relaxation Oscillator
87(5)
4.2.2 M-R Based Oscillator
92(4)
4.2.3 Memristor-Based VCO
96(1)
4.2.4 Discussion and Comparison
97(1)
4.3 Effect of Boundary on R-M Oscillator
98(4)
4.3.1 Mathematical Analysis
98(3)
4.3.2 Discussion and Comparison
101(1)
4.4 Two-Series Memristors Analysis
102(5)
4.5 Symmetric Memristive Two-Gate Oscillator
107(5)
4.5.1 Oscillation Concept
107(1)
4.5.2 Mathematical Analysis
108(3)
4.5.3 Circuit Validation
111(1)
4.6 Asymmetric Memristive Two-Gate Oscillator
112(3)
4.6.1 Mathematical Analysis
113(1)
4.6.2 Discussion and Comparison
114(1)
4.7 Power Consumption of Two Series Memristors
115(4)
References
119(2)
5 Memristor-Based Multilevel Digital Systems 121(30)
5.1 Number Systems
121(5)
5.1.1 The Conventional Number Systems
121(4)
5.1.2 Redundant Number Systems
125(1)
5.2 Addition and Subtraction Circuits
126(3)
5.2.1 Ripple-Carry Adder (RCA)
126(1)
5.2.2 Carry-Lookahead Adder (CLA)
127(1)
5.2.3 Carry-Select Adder
127(1)
5.2.4 Carry-Skip Adder
128(1)
5.3 Memristor-Based Digital Circuits
129(4)
5.3.1 Memristor Quantization
129(2)
5.3.2 One Memristor One Transistor Circuit
131(1)
5.3.3 Doublet Generator Circuit
131(2)
5.4 Memristor-Based Adder/Subtraction Circuits
133(10)
5.4.1 Memristor-Based Ternary Half Adder Circuit
133(3)
5.4.2 Memristor-Based Redundant Half Adder Circuit
136(5)
5.4.3 N-Bits CSD Redundant Binary Adder
141(2)
5.5 Memristor-Based Redundant Multiplier
143(7)
5.5.1 CMOS Architecture
143(1)
5.5.2 Memristor-Based Digital Circuit
144(1)
5.5.3 Redundant Multiplier
145(5)
References
150(1)
6 Memcapacitor: Modeling, Analysis, and Emulators 151(36)
6.1 Introduction
151(8)
6.1.1 Memcapacitive Systems
151(4)
6.1.2 Mathematical Representations of Time-Invariant Memcapacitor
155(2)
6.1.3 Physical Realizations
157(1)
6.1.4 First-Order Memcapacitor Model
158(1)
6.2 Mathematical Modeling of Memcapacitor
159(2)
6.3 Boundary Dynamics of Memcapacitor
161(3)
6.4 Memcapacitor Response Under Voltage Excitations
164(8)
6.4.1 Step Response
164(3)
6.4.2 Sinusoidal Response
167(3)
6.4.3 General Periodic Excitation Response
170(2)
6.5 Detailed Analysis of Two Series Memcapacitors
172(5)
6.5.1 Mathematical Analysis
172(2)
6.5.2 Practical Cases
174(1)
6.5.3 Circuit Simulation and Validation
175(2)
6.6 Detailed Analysis of Two Parallel Memcapacitors
177(2)
6.6.1 Mathematical Analysis
177(1)
6.6.2 Circuit Simulation and Validation
178(1)
6.7 General Analysis of Series and Parallel Memcapacitors
179(3)
6.7.1 Series Memcapacitors
179(1)
6.7.2 Parallel Memcapacitors
180(2)
6.8 Charge-Controlled Memristor-Less Memcapacitor Emulator
182(3)
References
185(2)
7 Memcapacitor Based Applications 187(20)
7.1 Introduction
187(1)
7.2 Resistive-Less Memcapacitor-Based Oscillator
188(7)
7.2.1 Mathematical Analysis
189(2)
7.2.2 Special Cases
191(2)
7.2.3 Simulation Verification
193(1)
7.2.4 Stored Energy
194(1)
7.3 Boundary Effect on Memcapacitor-Based Oscillator
195(3)
7.3.1 C-MC Oscillator Configuration
195(1)
7.3.2 MC-C Oscillator Configuration
196(1)
7.3.3 Results and Discussion
196(2)
7.4 Memcapacitor Bridge Synapses
198(7)
7.4.1 Mathematical Analysis of Memcapacitor Bridge
200(2)
7.4.2 Weight Programming
202(1)
7.4.3 SPICE Validation
203(2)
References
205(2)
8 Meminductor: Modeling, Analysis, and Emulators 207(22)
8.1 Introduction
207(2)
8.2 Mathematical Representations of Time-Invariant Meminductor
209(2)
8.2.1 Extended Meminductor
209(1)
8.2.2 Generic Meminductor
210(1)
8.2.3 Ideal Meminductor
210(1)
8.3 Mathematical Model of Meminductor
211(1)
8.4 Meminductor Response Under Current Excitations
212(6)
8.4.1 Step Response
212(2)
8.4.2 Sinusoidal Response
214(2)
8.4.3 Periodic Signals Response
216(2)
8.5 Memristor-Based Meminductor Emulator
218(3)
8.6 Memristor-Less Meminductor Emulators
221(5)
8.6.1 Circuit Realization of Meminductor Emulator
224(1)
8.6.2 Circuit Validation
225(1)
References
226(3)
Appendix A: Memristor, Memcapacitor, and Meminductor 229
Ahmed G. Radwan, Senior IEEE Member, Ph.D., is an Associate Professor at the Faculty of Engineering, Cairo University, and also at the Nanoelectronics Integrated Systems Center, Nile University, Egypt. His research interests include chaotic, fractional order, and memristor-based systems. He is the recipient of several awards in Mathematical and Engineering Sciences and has published over 100 international research papers, several US patents, several book chapters and three books ("Analog circuit design in the fractional order domain", Practical testing mythologies for detecting hard and soft faults in analog digital circuits, "Memristor-based multilevel arithmetic circuit").

 

Mohammed Fouda, is an assistant lecturer, Faculty of Engineering, Cairo University, Egypt. His research interests include Mem-element-based circuits and analog circuits. He has more than 20 international journal and conference papers. He won the best paper award in ICM 2013 in Lebanon.