Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mathematical Modelling of Sediment Transport and Deposition in Reservoirs - Guidelines and Case Studies / Modélisation Mathématique du Transport et des Dépôts de Sédiments dans les Réservoirs - Lignes Directrices et Études de Cas [Taylor & Francis e-book]

  • Formāts: 300 pages, 12 Tables, black and white
  • Sērija : ICOLD Bulletins Series
  • Izdošanas datums: 28-Jun-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781003170365
Citas grāmatas par šo tēmu:
  • Taylor & Francis e-book
  • Cena: 453,57 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standarta cena: 647,96 €
  • Ietaupiet 30%
  • Formāts: 300 pages, 12 Tables, black and white
  • Sērija : ICOLD Bulletins Series
  • Izdošanas datums: 28-Jun-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781003170365
Citas grāmatas par šo tēmu:
As reservoir sedimentation has proven to be a serious problem in South Africa, research in this field has been ongoing for more than 70 years. This publication emanates from extensive research which has been undertaken over the past 30 years with the support of the South African Department of Water and Sanitation as well as the South African Water Research Commission.

A great deal of information has fortunately also been obtained from China.

Given the universal nature of hydraulic formulae it is not surprising, yet gratifying, that Chinese and South African data generally conform to the same mathematical relationships. This indicates that these relationships should be applicable in other countries as well. Much of the information contained here has been condensed from a more comprehensive publication.

This ICOLD Bulletin follows on Bulletin 115 Dealing with reservoir sedimentation, which gave guidelines for management of reservoirs to limit sedimentation. The guidelines on mathematical modelling of sediment transport dynamics in reservoirs in this document can be used during the planning and design of new dams, as well as for the management of existing dams.

Comme la sédimentation dans les réservoirs s'est avérée źtre un problčme sérieux en Afrique du Sud, la recherche dans ce domaine est en cours depuis plus de 70 ans. Cette publication émane de la recherche étendue qui a été menée au cours des 30 derničres années avec l'appui du ministčre sud-africain de leau et de lassainissement, ainsi que de la commission sud-africaine de recherche sur l'eau.

Un grand nombre d'informations ont également été obtenues de la part de la Chine.

Étant donné le caractčre universel de formules hydrauliques, il n'est pas surprenant, mais trčs gratifiant, que les données chinoises et sud-africaines se conforment généralement aux mźmes relations mathématiques. Ceci indique que ces relations devraient źtre applicables dans d'autres pays également. Une grande partie de l'information contenue ici a été condensée ą partir d'une publication plus complčte.

Ce bulletin CIGB fait suite au bulletin 115 "Traité sur la sédimentation dans les réservoirs", qui a donné des directives pour la gestion des réservoirs en vue de limiter la sédimentation. Les directives sur la modélisation mathématique de la dynamique de transport des sédiments dans les réservoirs de ce présent document peuvent źtre utilisées lors de la planification et la conception de nouveaux barrages et pour la gestion des barrages existants.
1 Introduction
35(8)
2 Reservoir Operation And Sediment Transport Processes
43(14)
2.1 Introduction
43(2)
2.2 Sediment transport mechanisms
45(2)
2.3 Modes of reservoir operation and impacts on the sediment balance
47(10)
3 Turbulent Sediment Transport
57(78)
3.1 Introduction
57(8)
3.2 Review of selected equilibrium sediment transport equations
65(28)
3.3 Calibration with reservoir data
93(22)
3.4 Non-equilibrium sediment transport
115(20)
3.4.1 Introduction
115(6)
3.4.2 Review of existing theory
121(8)
3.4.3 Modelling of nonequilibrium sediment transport processes: Welbedacht Reservoir (Caledon River, South Africa)
129(4)
3.4.4 Comparison between calibrations
133(2)
4 Density Currents
135(94)
4.1 Introduction
135(2)
4.2 Occurrence of density currents in reservoirs
137(6)
4.3 Hydraulics of density currents
143(6)
4.3.1 General
143(2)
4.3.2 Velocity distribution
145(2)
4.3.3 Vertical suspended sediment distribution
147(1)
4.3.4 Shear stress distribution
147(2)
4.4 Mathematical description of the velocity distribution and the thickness of a density current
149(10)
4.5 Verification of theory to predict the velocity profile and depth of a density current with laboratory and field data
159(4)
4.6 Movement of a density current: flow resistance and velocity
163(8)
4.7 Cross-sectional variation in velocity and sediment concentration across a density current in a reservoir
171(6)
4.8 Motion of the head of a density current
177(8)
4.9 Sediment transport by density currents
185(6)
4.10 Density current formation following flushing
191(8)
4.11 Non-equilibrium density current sediment transport
199(2)
4.12 Graded sediment transport by density currents and the sorting process
201(2)
4.13 Formation of a density current
203(18)
4.13.1 Review of theory
203(12)
4.13.2 Prediction by means of minimum stream power principle
215(6)
4.14 Laminar density currents associated with hyper concentrated sediment transport
221(4)
4.15 Venting of density currents through reservoirs
225(4)
5 Mathematical Models And Case Studies
229(98)
5.1 One dimensional mathematical models
229(44)
5.1.1 Introduction
229(2)
5.1.2 Reservoir sedimentation model (1D): Mike 11-RFM: Welbedacht Reservoir
231(20)
5.1.3 Reservoir Sedimentation Model: GSTARS: Tarbela Dam, Pakistan (Yang and Simoes, 2003)
251(14)
5.1.4 Reservoir Sedimentation Model RESSASS: Tarbela Dam (TAMS, 1998)
265(4)
5.1.5 River model Mike 11: Lake Roxburgh, New Zealand (Mackay et al., 2000)
269(4)
5.2 Computational modelling of reservoir sedimentation and flushing with a two-dimensional model
273(22)
5.2.1 Background
273(4)
5.2.2 Data
277(4)
5.2.3 Theoretical Background
281(1)
5.2.4 Grid Generation
281(2)
5.2.5 Hydrodynamics
283(1)
5.2.6 Cohesive sediment transport model
283(4)
5.2.7 Calibration of sedimentation during 1973-76
287(2)
5.2.8 Flushing during 1991
289(4)
5.2.9 Flushing with Low Level Outlets
293(1)
5.2.10 Conclusions
293(2)
5.3 Three-dimensional Mathematical Modelling (turbulent sediment transport)
295(12)
5.3.1 3d Model Equations
295(4)
5.3.2 Three-dimensional Model (case study): Three Gorges Reservoir Project, China (Dou et al., 2004)
299(8)
5.4 Models of density currents
307(20)
5.4.1 Introduction
307(4)
5.4.2 Case study 1: Laboratory flume and field data, Canada
311(10)
5.4.3 Case study 2: Luzzone Reservoir, Switzerland
321(4)
5.4.4 Conclusion
325(2)
6 Conclusions And Recommendations
327(1)
7 References
328
The Commission Internationale des Grands Barrages (CIGB) / International Commission on Large Dams (ICOLD) is a non-governmental international organization which provides a forum for the exchange of knowledge and experience in dam engineering. The organization leads the profession in ensuring that dams are built safely, efficiently, economically, and without detrimental effects on the environment. Its original aim was to encourage advances in the planning, design, construction, operation, and maintenance of large dams and their associated civil works, by collecting and disseminating relevant information and by studying related technical questions. Since the late 1960s, focus was put on subjects of current concern such as dam safety, monitoring of performance, reanalysis of older dams and spillways, effects of ageing and environmental impact. More recently, new subjects include cost studies at the planning and construction stages, harnessing international rivers, information for the public at large, and financing.