Preface |
|
xi | |
Introduction |
|
xiii | |
List of Main Symbols |
|
xxiii | |
Chapter 1 A One-Dimensional Beam Metamodel |
|
1 | (54) |
|
|
2 | (1) |
|
1.2 Internally unconstrained beams |
|
|
3 | (9) |
|
|
3 | (2) |
|
|
5 | (4) |
|
1.2.3 The hyperelastic law |
|
|
9 | (2) |
|
1.2.4 The Fundamental Problem |
|
|
11 | (1) |
|
1.3 Internally constrained beams |
|
|
12 | (12) |
|
1.3.1 The mixed formulation for the internally constrained beam kinematics and constraints |
|
|
13 | (5) |
|
1.3.2 The displacement method for the internally constrained beam |
|
|
18 | (6) |
|
1.4 Internally unconstrained prestressed beams |
|
|
24 | (5) |
|
1.4.1 The nonlinear theory |
|
|
25 | (1) |
|
1.4.2 The linearized theory |
|
|
26 | (3) |
|
1.5 Internally constrained prestressed beams |
|
|
29 | (4) |
|
1.5.1 The nonlinear mixed formulation |
|
|
29 | (1) |
|
1.5.2 The linearized mixed formulation |
|
|
30 | (1) |
|
1.5.3 The nonlinear displacement formulation |
|
|
31 | (1) |
|
1.5.4 The linearized displacement formulation |
|
|
32 | (1) |
|
1.6 The variational formulation |
|
|
33 | (11) |
|
1.6.1 The total potential energy principle |
|
|
34 | (2) |
|
1.6.2 Unconstrained beams |
|
|
36 | (1) |
|
|
37 | (2) |
|
1.6.4 Unconstrained prestressed beams |
|
|
39 | (2) |
|
1.6.5 Constrained prestressed beams |
|
|
41 | (3) |
|
1.7 Example: the linear Timoshenko beam |
|
|
44 | (3) |
|
|
47 | (8) |
Chapter 2 Straight Beams |
|
55 | (78) |
|
|
55 | (27) |
|
2.1.1 The displacement and rotation fields |
|
|
55 | (5) |
|
2.1.2 Tackling the rotation tensor |
|
|
60 | (3) |
|
2.1.3 The geometric boundary conditions |
|
|
63 | (1) |
|
|
64 | (4) |
|
2.1.5 The curvature vector |
|
|
68 | (5) |
|
2.1.6 The strain-displacement relationships |
|
|
73 | (1) |
|
2.1.7 The velocity and spin fields |
|
|
74 | (4) |
|
2.1.8 The velocity gradients and strain-rates |
|
|
78 | (4) |
|
|
82 | (20) |
|
2.2.1 The balance of virtual powers |
|
|
83 | (5) |
|
2.2.2 The inertial contributions |
|
|
88 | (3) |
|
2.2.3 The balance of momentum |
|
|
91 | (6) |
|
2.2.4 The scalar forms of the balance equations and boundary conditions |
|
|
97 | (2) |
|
2.2.5 The Lagrangian balance equations |
|
|
99 | (3) |
|
|
102 | (12) |
|
2.3.1 The hyperelastic law |
|
|
102 | (2) |
|
2.3.2 Identification of the elastic law from a 3D-model |
|
|
104 | (6) |
|
2.3.3 Homogenization of beam-like structures |
|
|
110 | (2) |
|
2.3.4 Linear viscoelastic laws |
|
|
112 | (2) |
|
2.4 The Fundamental Problem |
|
|
114 | (8) |
|
|
115 | (3) |
|
2.4.2 The linearized theory for elastic prestressed beams |
|
|
118 | (4) |
|
|
122 | (7) |
|
|
122 | (2) |
|
|
124 | (2) |
|
2.5.3 The Virtual Power Principle |
|
|
126 | (1) |
|
|
127 | (1) |
|
2.5.5 The Fundamental Problem |
|
|
127 | (2) |
|
|
129 | (4) |
Chapter 3 Curved Beams |
|
133 | (30) |
|
3.1 The reference configuration and the initial curvature |
|
|
133 | (4) |
|
3.2 The beam model in the 3D-space |
|
|
137 | (15) |
|
|
137 | (5) |
|
|
142 | (2) |
|
|
144 | (1) |
|
3.2.4 The Fundamental Problem |
|
|
144 | (8) |
|
3.3 The planar curved beam |
|
|
152 | (8) |
|
|
153 | (2) |
|
|
155 | (2) |
|
3.3.3 The Virtual Power Principle |
|
|
157 | (1) |
|
|
157 | (1) |
|
3.3.5 Fundamental Problem |
|
|
158 | (2) |
|
|
160 | (3) |
Chapter 4 Internally Constrained Beams |
|
163 | (42) |
|
4.1 Stiff beams and internal constraints |
|
|
163 | (3) |
|
|
166 | (2) |
|
4.3 The unshearable straight beam in 3D |
|
|
168 | (9) |
|
4.3.1 The mixed formulation |
|
|
169 | (3) |
|
4.3.2 The displacement formulation |
|
|
172 | (5) |
|
4.4 The unshearable straight planar beam |
|
|
177 | (3) |
|
4.5 The inextensible and unshearable straight beam in 3D |
|
|
180 | (3) |
|
4.5.1 Hybrid formulation: Version I |
|
|
181 | (1) |
|
4.5.2 Hybrid formulation: Version II |
|
|
182 | (1) |
|
4.6 The inextensible and unshearable straight planar beam |
|
|
183 | (7) |
|
4.6.1 Hybrid formulation: Version I |
|
|
183 | (2) |
|
4.6.2 Hybrid formulation: Version II |
|
|
185 | (1) |
|
4.6.3 The mixed formulation |
|
|
186 | (2) |
|
4.6.4 The direct condensation of the elastica equilibrium equations |
|
|
188 | (2) |
|
4.7 The inextensible, unshearable and untwistable straight beam |
|
|
190 | (2) |
|
|
192 | (1) |
|
4.9 The shear-shear-torsional beam |
|
|
193 | (4) |
|
4.10 The planar unshearable and inextensible curved beam |
|
|
197 | (4) |
|
4.10.1 The hybrid formulation |
|
|
197 | (3) |
|
4.10.2 The mixed formulation |
|
|
200 | (1) |
|
|
201 | (4) |
Chapter 5 Flexible Cables |
|
205 | (38) |
|
5.1 Flexible cables as a limit of slender beams |
|
|
205 | (2) |
|
|
207 | (13) |
|
|
207 | (6) |
|
|
213 | (4) |
|
|
217 | (1) |
|
5.2.4 The Fundamental Problem |
|
|
218 | (2) |
|
|
220 | (10) |
|
|
220 | (5) |
|
5.3.2 The linearized theory |
|
|
225 | (2) |
|
|
227 | (3) |
|
|
230 | (5) |
|
5.4.1 An approximated nonlinear model |
|
|
231 | (3) |
|
5.4.2 An approximated linearized model |
|
|
234 | (1) |
|
|
235 | (5) |
|
5.5.1 Inextensible unprestressed cables |
|
|
236 | (1) |
|
5.5.2 Inextensible prestressed cables |
|
|
237 | (3) |
|
|
240 | (3) |
Chapter 6 Stiff Cables |
|
243 | (28) |
|
|
243 | (3) |
|
6.2 Unprestressed stiff cables |
|
|
246 | (6) |
|
|
246 | (3) |
|
|
249 | (2) |
|
|
251 | (1) |
|
6.2.4 The Fundamental Problem |
|
|
251 | (1) |
|
6.3 Prestressed stiff cables |
|
|
252 | (9) |
|
|
253 | (3) |
|
6.3.2 The linearized model |
|
|
256 | (2) |
|
|
258 | (3) |
|
|
261 | (3) |
|
|
261 | (2) |
|
|
263 | (1) |
|
6.5 Inextensible stiff cables |
|
|
264 | (5) |
|
6.5.1 Unprestressed cables |
|
|
265 | (1) |
|
|
266 | (2) |
|
|
268 | (1) |
|
|
269 | (2) |
Chapter 7 Locally-Deformable Thin-Walled Beams |
|
271 | (40) |
|
|
271 | (2) |
|
7.2 A one-dimensional direct model for double-symmetric TWB |
|
|
273 | (4) |
|
7.3 A one-dimensional direct model for non-symmetric TWB |
|
|
277 | (7) |
|
7.4 Identification strategy from 3D-models of TWB |
|
|
284 | (1) |
|
|
285 | (4) |
|
7.6 Warpable, cross-undeformableTWB |
|
|
289 | (10) |
|
|
289 | (4) |
|
7.6.2 Identification procedure |
|
|
293 | (6) |
|
7.6.3 The Fundamental Problem |
|
|
299 | (1) |
|
7.7 Unwarpahle, cross-deformable, planar TWB |
|
|
299 | (9) |
|
|
300 | (3) |
|
7.7.2 Identification procedure |
|
|
303 | (4) |
|
7.7.3 The Fundamental Problem |
|
|
307 | (1) |
|
|
308 | (3) |
Chapter 8 Distortion-Constrained Thin-Walled Beams |
|
311 | (24) |
|
|
311 | (1) |
|
|
312 | (5) |
|
8.2.1 The Vlasov constraint for open TWB |
|
|
312 | (2) |
|
8.2.2 The Bredt constraint for tubular TWB |
|
|
314 | (2) |
|
8.2.3 The Brazier constraint for planar TWB |
|
|
316 | (1) |
|
8.3 The non-uniform torsion problem for bi-symmetric cross-sections |
|
|
317 | (7) |
|
8.3.1 The unconstrained model |
|
|
317 | (2) |
|
8.3.2 The mixed formulation for the constrained model |
|
|
319 | (4) |
|
8.3.3 The displacement formulation for the constrained model |
|
|
323 | (1) |
|
8.4 The general problem for warpable TWB |
|
|
324 | (4) |
|
8.5 Cross-deformable planar TWB |
|
|
328 | (4) |
|
|
332 | (3) |
Bibliography |
|
335 | (10) |
Index |
|
345 | |