Atjaunināt sīkdatņu piekrišanu

Mathematical Models in Developmental Biology [Mīkstie vāki]

  • Formāts: Paperback / softback, 249 pages, height x width: 254x178 mm, weight: 459 g
  • Sērija : Courant Lecture Notes
  • Izdošanas datums: 30-Jun-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 147041080X
  • ISBN-13: 9781470410803
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 54,72 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 249 pages, height x width: 254x178 mm, weight: 459 g
  • Sērija : Courant Lecture Notes
  • Izdošanas datums: 30-Jun-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 147041080X
  • ISBN-13: 9781470410803
Citas grāmatas par šo tēmu:
In lecture notes from a graduate course at the Courant Institute of Mathematical Sciences, Percus and Childress describe mathematical models that can be used to understand the development of multi-celled animals from an initial single cell egg. Of particular interest is what kinds of models are suitable for different studies, and how to select one or ones that will illuminate the issue at hand. Their topics are catastrophe theory, pattern formation, differential adhesion and morphogenesis, the origins of movement, chemotaxis, cell proliferation, somite formation in vertebrates, compartments, and segmentation of insect embryos. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)
Preface vii
Chapter 1 Introduction
1(12)
1.1 Modeling Biological Development
1(1)
1.2 Early Stages: A Brief Survey
2(1)
1.3 An Example: Formation of the Blastocoel
3(10)
Chapter 2 Catastrophe Theory
13(22)
2.1 Basic Elements
13(6)
2.2 Categorization and Applications
19(8)
2.3 Global Implications of Local Structure
27(8)
Chapter 3 Pattern Formation
35(32)
3.1 Biological Pattern
35(3)
3.2 Reaction-Diffusion Systems: Inception of Inhomogeneity
38(9)
3.3 Inhomogeneous Steady State
47(6)
3.4 Multistable Regimes
53(8)
3.5 Some Applications
61(6)
Chapter 4 Differential Adhesion and Morphogenesis
67(22)
4.1 Cell Sorting by Differential Adhesion
68(6)
4.2 Rheology of Cell Aggregates
74(7)
4.3 Elements of Morphodynamics
81(8)
Chapter 5 The Origins of Movement
89(36)
5.1 Chemistry and Geometry of Adhesion
89(9)
5.2 Equilibrium and Stability
98(3)
5.3 Gastrulation in Amphibians
101(9)
5.4 Cell Motion in Thin Layers
110(7)
5.5 Dynamics of Adhesion-Driven Structure
117(4)
5.6 Cell-Substrate Adhesion
121(2)
5.7 Imaginal Disc Evagination
123(2)
Chapter 6 Chemotaxis
125(12)
6.1 Initiation of Slime Mold Aggregation
125(4)
6.2 Other Aspects of Chemotaxis
129(8)
Chapter 7 Cell Proliferation
137(36)
7.1 Homogeneous Population
137(14)
7.2 Environmental Control of Cell Division
151(9)
7.3 Stem Cell Dynamics
160(3)
7.4 Sol-Gel Transformation
163(2)
7.5 Mesoscopic Viewpoint
165(4)
7.6 Turing Dynamical Resolution
169(4)
Chapter 8 Somite Formation in Vertebrates
173(18)
8.1 Elementary Oscillations
173(3)
8.2 Time-Delay Oscillators
176(3)
8.3 Biochemical Entrainment and Biochemical Waves
179(6)
8.4 Clock, Wavefront, and Somite Condensation
185(6)
Chapter 9 Compartments
191(18)
9.1 The Evidence and Its Implications
191(7)
9.2 Nonlinear Theory of Compartmentalization
198(11)
Chapter 10 Segmentation of Insect Embryos
209(22)
10.1 Prototypical Reaction-Diffusion: One Component
209(6)
10.2 Prepattern Activation
215(6)
10.3 Further Aspects of Reaction-Diffusion
221(4)
10.4 Pattern Under Growth: Chick Limb Bud
225(2)
10.5 Insect Imaginal Disc
227(4)
Supplementary Notes
231(6)
Chapter 2
231(1)
Chapter 3
231(2)
Chapters 4 and 5
233(1)
Chapter 6
233(1)
Chapters 7 and 8
234(1)
Chapters 9 and 10
234(3)
Bibliography 237(8)
Index 245
Jerome K. Percus and Stephen Childress, New York University, Courant Institute of Mathematical Sciences, NY, USA.