Series Editor's Introduction |
|
xi | |
Acknowledgments |
|
xiii | |
Preface |
|
xv | |
What's New in the Second Edition |
|
xvii | |
Notation |
|
xvii | |
Recommended Reading |
|
xx | |
Website |
|
xxii | |
About the Author |
|
xxiii | |
|
1 Matrices, Linear Algebra, and Vector Geometry: The Basics |
|
|
1 | (41) |
|
|
1 | (17) |
|
1.1.1 Introducing the Actors: Definitions |
|
|
1 | (4) |
|
1.1.2 Simple Matrix Arithmetic |
|
|
5 | (6) |
|
|
11 | (4) |
|
|
15 | (1) |
|
1.1.5 The Kronecker Product |
|
|
16 | (2) |
|
1.2 Basic Vector Geometry |
|
|
18 | (2) |
|
1.3 Vector Spaces and Subspaces |
|
|
20 | (11) |
|
1.3.1 Orthogonality and Orthogonal Projections |
|
|
25 | (6) |
|
1.4 Matrix Rank and the Solution of Linear Simultaneous Equations |
|
|
31 | (11) |
|
|
31 | (2) |
|
1.4.2 Linear Simultaneous Equations |
|
|
33 | (5) |
|
1.4.3 Generalized Inverses |
|
|
38 | (4) |
|
2 Matrix Decompositions and Quadratic Forms |
|
|
42 | (19) |
|
2.1 Eigenvalues and Eigenvectors |
|
|
42 | (5) |
|
2.1.1 Generalized Eigenvalues and Eigenvectors |
|
|
46 | (1) |
|
2.1.2 The Singular-Value Decomposition |
|
|
46 | (1) |
|
2.2 Quadratic Forms and Positive-Definite Matrices |
|
|
47 | (9) |
|
2.2.1 The Elliptical Geometry of Quadratic Forms |
|
|
48 | (7) |
|
2.2.2 The Cholesky Decomposition |
|
|
55 | (1) |
|
|
56 | (5) |
|
2.3.1 Using the QR Decomposition to Compute Eigenvalues and Eigenvectors |
|
|
60 | (1) |
|
3 An Introduction to Calculus |
|
|
61 | (45) |
|
|
61 | (8) |
|
|
61 | (1) |
|
|
62 | (2) |
|
|
64 | (1) |
|
3.1.4 Logarithms and Exponentials |
|
|
65 | (2) |
|
3.1.5 Basic Trigonometric Functions |
|
|
67 | (2) |
|
|
69 | (4) |
|
3.2.1 The "Epsilon-Delta" Definition of a Limit |
|
|
69 | (3) |
|
3.2.2 Finding a Limit: An Example |
|
|
72 | (1) |
|
3.2.3 Rules for Manipulating Limits |
|
|
72 | (1) |
|
3.3 The Derivative of a Function |
|
|
73 | (8) |
|
3.3.1 The Derivative as the Limit of the Difference Quotient: An Example |
|
|
75 | (1) |
|
3.3.2 Derivatives of Powers |
|
|
76 | (1) |
|
3.3.3 Rules for Manipulating Derivatives |
|
|
77 | (2) |
|
3.3.4 Derivatives of Logs and Exponentials |
|
|
79 | (1) |
|
3.3.5 Derivatives of the Basic Trigonometric Functions |
|
|
80 | (1) |
|
3.3.6 Second-Order and Higher-Order Derivatives |
|
|
80 | (1) |
|
|
81 | (5) |
|
3.4.1 Optimization: An Example |
|
|
83 | (3) |
|
3.5 Multivariable and Matrix Differential Calculus |
|
|
86 | (11) |
|
3.5.1 Partial Derivatives |
|
|
86 | (2) |
|
3.5.2 Lagrange Multipliers for Constrained Optimization |
|
|
88 | (2) |
|
3.5.3 Differential Calculus in Matrix Form |
|
|
90 | (3) |
|
3.5.4 Numerical Optimization |
|
|
93 | (4) |
|
|
97 | (1) |
|
3.7 Essential Ideas of Integral Calculus |
|
|
98 | (8) |
|
3.7.1 Areas: Definite Integrals |
|
|
98 | (2) |
|
3.7.2 Indefinite Integrals |
|
|
100 | (1) |
|
3.7.3 The Fundamental Theorem of Calculus |
|
|
101 | (3) |
|
3.7.4 Multivariable Integral Calculus |
|
|
104 | (2) |
|
4 Elementary Probability Theory |
|
|
106 | (16) |
|
|
106 | (5) |
|
4.1.1 Axioms of Probability |
|
|
107 | (1) |
|
4.1.2 Relations Among Events, Conditional Probability, and Independence |
|
|
108 | (2) |
|
4.1.3 Bonferroni Inequalities |
|
|
110 | (1) |
|
|
111 | (8) |
|
4.2.1 Expectation and Variance |
|
|
114 | (1) |
|
4.2.2 Joint and Conditional Probability Distributions |
|
|
115 | (2) |
|
4.2.3 Independence, Dependence, and Covariance |
|
|
117 | (1) |
|
4.2.4 Vector Random Variables |
|
|
118 | (1) |
|
4.3 Transformations of Random Variables |
|
|
119 | (3) |
|
4.3.1 Transformations of Vector Random Variables |
|
|
120 | (2) |
|
5 Common Probability Distributions |
|
|
122 | (23) |
|
5.1 Some Discrete Probability Distributions |
|
|
122 | (4) |
|
5.1.1 The Binomial and Bernoulli Distributions |
|
|
122 | (2) |
|
5.1.2 The Multinomial Distributions |
|
|
124 | (1) |
|
5.1.3 The Poisson Distributions |
|
|
125 | (1) |
|
5.1.4 The Negative Binomial Distributions |
|
|
126 | (1) |
|
5.2 Some Continuous Distributions |
|
|
126 | (16) |
|
5.2.1 The Normal Distributions |
|
|
127 | (1) |
|
5.2.2 The Chi-Square (Χ2) Distributions |
|
|
128 | (2) |
|
5.2.3 Student's t-Distributions |
|
|
130 | (2) |
|
5.2.4 The F-Distributions |
|
|
132 | (1) |
|
5.2.5 The Multivariate-Normal Distributions |
|
|
132 | (5) |
|
5.2.6 The Exponential Distributions |
|
|
137 | (1) |
|
5.2.7 The Inverse-Gaussian Distributions |
|
|
137 | (1) |
|
5.2.8 The Gamma Distributions |
|
|
138 | (1) |
|
5.2.9 The Beta Distributions |
|
|
139 | (2) |
|
5.2.10 The Wishart Distributions |
|
|
141 | (1) |
|
5.3 Exponential Families of Distributions |
|
|
142 | (3) |
|
5.3.1 The Binomial Family |
|
|
144 | (1) |
|
|
144 | (1) |
|
5.3.3 The Multinomial Family |
|
|
144 | (1) |
|
6 An Introduction to Statistical Theory |
|
|
145 | (53) |
|
6.1 Asymptotic Distribution Theory |
|
|
145 | (6) |
|
|
145 | (2) |
|
6.1.2 Asymptotic Expectation and Variance |
|
|
147 | (2) |
|
6.1.3 Asymptotic Distribution |
|
|
149 | (1) |
|
6.1.4 Vector and Matrix Random Variables |
|
|
149 | (2) |
|
6.2 Properties of Estimators |
|
|
151 | (12) |
|
|
151 | (1) |
|
6.2.2 Mean-Squared Error and Efficiency |
|
|
151 | (2) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (9) |
|
6.3 Maximum-Likelihood Estimation |
|
|
163 | (15) |
|
6.3.1 Preliminary Example |
|
|
164 | (3) |
|
6.3.2 Properties of Maximum-Likelihood Estimators |
|
|
167 | (2) |
|
6.3.3 Wald, Likelihood-Ratio, and Score Tests |
|
|
169 | (4) |
|
|
173 | (3) |
|
|
176 | (2) |
|
6.4 Introduction to Bayesian Inference |
|
|
178 | (20) |
|
|
178 | (3) |
|
6.4.2 Extending Bayes's Theorem |
|
|
181 | (2) |
|
6.4.3 An Example of Bayesian Inference |
|
|
183 | (2) |
|
6.4.4 Bayesian Interval Estimates |
|
|
185 | (1) |
|
6.4.5 Bayesian Inference for Several Parameters |
|
|
186 | (1) |
|
6.4.6 Markov-Chain Monte Carlo |
|
|
186 | (12) |
|
7 Putting the Math to Work: Linear Least-Squares Regression |
|
|
198 | (21) |
|
|
198 | (5) |
|
7.1.1 Computing the Least-Squares Solution by the QR and SVD Decompositions |
|
|
201 | (2) |
|
7.2 A Statistical Model for Linear Regression |
|
|
203 | (1) |
|
7.3 The Least-Squares Coefficients as Estimators |
|
|
204 | (1) |
|
7.4 Statistical Inference for the Regression Model |
|
|
205 | (3) |
|
7.5 Maximum-Likelihood Estimation of the Regression Model |
|
|
208 | (1) |
|
|
209 | (3) |
|
7.7 The Elliptical Geometry of Linear Least-Squares Regression |
|
|
212 | (7) |
|
|
212 | (1) |
|
7.7.2 Multiple Regression |
|
|
213 | (6) |
References |
|
219 | (2) |
Index |
|
221 | |