Preface |
|
ix | |
|
1 Definition of Bayesian Statistics |
|
|
1 | (34) |
|
|
2 | (2) |
|
1.2 Probability Distribution |
|
|
4 | (3) |
|
|
7 | (2) |
|
1.4 Model, Prior, and Posterior |
|
|
9 | (2) |
|
1.5 Examples of Posterior Distributions |
|
|
11 | (6) |
|
1.6 Estimation and Generalization |
|
|
17 | (4) |
|
1.7 Marginal Likelihood or Partition Function |
|
|
21 | (4) |
|
1.8 Conditional Independent Cases |
|
|
25 | (3) |
|
|
28 | (7) |
|
|
35 | (32) |
|
|
35 | (6) |
|
2.2 Multinomial Distribution |
|
|
41 | (7) |
|
|
48 | (5) |
|
|
53 | (3) |
|
2.5 Finite Normal Mixture |
|
|
56 | (3) |
|
2.6 Nonparametric Mixture |
|
|
59 | (4) |
|
|
63 | (4) |
|
3 Basic Formula of Bayesian Observables |
|
|
67 | (32) |
|
3.1 Formal Relation between True and Model |
|
|
67 | (10) |
|
3.2 Normalized Observables |
|
|
77 | (3) |
|
3.3 Cumulant Generating Functions |
|
|
80 | (5) |
|
3.4 Basic Bayesian Theory |
|
|
85 | (9) |
|
|
94 | (5) |
|
4 Regular Posterior Distribution |
|
|
99 | (36) |
|
4.1 Division of Partition Function |
|
|
99 | (8) |
|
4.2 Asymptotic Free Energy |
|
|
107 | (4) |
|
|
111 | (7) |
|
4.4 Proof of Asymptotic Expansions |
|
|
118 | (5) |
|
|
123 | (3) |
|
|
126 | (9) |
|
5 Standard Posterior Distribution |
|
|
135 | (42) |
|
|
136 | (10) |
|
5.2 State Density Function |
|
|
146 | (6) |
|
5.3 Asymptotic Free Energy |
|
|
152 | (2) |
|
5.4 Renormalized Posterior Distribution |
|
|
154 | (8) |
|
5.5 Conditionally Independent Case |
|
|
162 | (9) |
|
|
171 | (6) |
|
6 General Posterior Distribution |
|
|
177 | (30) |
|
6.1 Bayesian Decomposition |
|
|
177 | (4) |
|
6.2 Resolution of Singularities |
|
|
181 | (9) |
|
6.3 General Asymptotic Theory |
|
|
190 | (6) |
|
6.4 Maximum A Posteriori Method |
|
|
196 | (7) |
|
|
203 | (4) |
|
7 Markov Chain Monte Carlo |
|
|
207 | (24) |
|
|
207 | (10) |
|
7.1.1 Basic Metropolis Method |
|
|
209 | (2) |
|
7.1.2 Hamiltonian Monte Carlo |
|
|
211 | (4) |
|
|
215 | (2) |
|
|
217 | (8) |
|
7.2.1 Gibbs Sampler for Normal Mixture |
|
|
218 | (3) |
|
7.2.2 Nonparametric Bayesian Sampler |
|
|
221 | (4) |
|
7.3 Numerical Approximation of Observables |
|
|
225 | (4) |
|
7.3.1 Generalization and Cross Validation Losses |
|
|
225 | (1) |
|
7.3.2 Numerical Free Energy |
|
|
226 | (3) |
|
|
229 | (2) |
|
|
231 | (36) |
|
|
231 | (20) |
|
8.1.1 Criteria for Generalization Loss |
|
|
232 | (8) |
|
8.1.2 Comparison of ISCV with WAIC |
|
|
240 | (5) |
|
8.1.3 Criteria for Free Energy |
|
|
245 | (5) |
|
8.1.4 Discussion for Model Selection |
|
|
250 | (1) |
|
8.2 Hyperparameter Optimization |
|
|
251 | (13) |
|
8.2.1 Criteria for Generalization Loss |
|
|
253 | (4) |
|
8.2.2 Criterion for Free Energy |
|
|
257 | (2) |
|
8.2.3 Discussion for Hyperparameter Optimization |
|
|
259 | (5) |
|
|
264 | (3) |
|
9 Topics in Bayesian Statistics |
|
|
267 | (26) |
|
|
267 | (3) |
|
9.2 Bayesian Hypothesis Test |
|
|
270 | (5) |
|
9.3 Bayesian Model Comparison |
|
|
275 | (2) |
|
|
277 | (5) |
|
|
282 | (4) |
|
|
286 | (5) |
|
|
291 | (2) |
|
10 Basic Probability Theory |
|
|
293 | (16) |
|
|
293 | (1) |
|
10.2 Kullback-Leibler Distance |
|
|
294 | (2) |
|
|
296 | (6) |
|
|
302 | (1) |
|
10.5 Convergence of Expected Values |
|
|
303 | (3) |
|
10.6 Mixture by Dirichlet Process |
|
|
306 | (3) |
References |
|
309 | (8) |
Index |
|
317 | |