|
|
1 | (2) |
|
1.1 Aims and Objectives of This Book |
|
|
1 | (1) |
|
1.2 Who Should Read This Book? |
|
|
1 | (1) |
|
1.3 Assumptions Made in This Book |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.5 Is Mathematics Difficult? |
|
|
2 | (1) |
|
|
3 | (8) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
2.4 Positional Number System |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (3) |
|
|
9 | (2) |
|
|
11 | (12) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (2) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
3.4 Solving the Roots of a Quadratic Equation |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
18 | (3) |
|
3.8.1 Explicit and Implicit Equations |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
3.8.4 Function Domains and Ranges |
|
|
21 | (1) |
|
|
21 | (2) |
|
|
23 | (10) |
|
|
23 | (1) |
|
|
23 | (1) |
|
4.3 Units of Angular Measurement |
|
|
23 | (1) |
|
4.4 The Trigonometric Ratios |
|
|
24 | (3) |
|
|
26 | (1) |
|
4.5 Inverse Trigonometric Ratios |
|
|
27 | (2) |
|
4.6 Trigonometric Identities |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
4.10 Perimeter Relationships |
|
|
31 | (1) |
|
|
31 | (2) |
|
|
33 | (10) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (2) |
|
|
35 | (1) |
|
|
36 | (1) |
|
5.6 Theorem of Pythagoras in 2D |
|
|
37 | (1) |
|
5.7 3D Cartesian Coordinates |
|
|
37 | (2) |
|
5.7.1 Theorem of Pythagoras in 3D |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
5.9 Spherical Polar Coordinates |
|
|
40 | (1) |
|
5.10 Cylindrical Coordinates |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (22) |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (3) |
|
|
44 | (1) |
|
6.3.2 Graphical Representation of Vectors |
|
|
45 | (1) |
|
6.3.3 Magnitude of a Vector |
|
|
46 | (1) |
|
|
47 | (14) |
|
6.4.1 Vector Manipulation |
|
|
48 | (1) |
|
|
48 | (1) |
|
6.4.3 Vector Addition and Subtraction |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (2) |
|
6.4.9 The Dot Product in Lighting Calculations |
|
|
54 | (1) |
|
6.4.10 The Scalar Product in Back-Face Detection |
|
|
55 | (1) |
|
6.4.11 The Vector Product |
|
|
56 | (4) |
|
6.4.12 The Right-Hand Rule |
|
|
60 | (1) |
|
6.5 Deriving a Unit Normal Vector for a Triangle |
|
|
61 | (1) |
|
|
61 | (2) |
|
6.6.1 Calculating 2D Areas |
|
|
62 | (1) |
|
|
63 | (2) |
|
|
65 | (56) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (4) |
|
7.4.1 Systems of Notation |
|
|
70 | (1) |
|
7.4.2 The Determinant of a Matrix |
|
|
70 | (1) |
|
7.5 Homogeneous Coordinates |
|
|
71 | (9) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
76 | (2) |
|
|
78 | (1) |
|
|
79 | (1) |
|
7.5.8 2D Rotation About an Arbitrary Point |
|
|
79 | (1) |
|
|
80 | (7) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (4) |
|
|
85 | (1) |
|
7.6.5 Rotating About an Axis |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (3) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
7.8 Positioning the Virtual Camera |
|
|
90 | (6) |
|
|
91 | (2) |
|
|
93 | (3) |
|
7.9 Rotating a Point About an Arbitrary Axis |
|
|
96 | (17) |
|
|
96 | (7) |
|
|
103 | (1) |
|
7.9.3 Adding and Subtracting Quaternions |
|
|
104 | (1) |
|
7.9.4 Multiplying Quaternions |
|
|
104 | (1) |
|
|
105 | (1) |
|
7.9.6 The Inverse Quaternion |
|
|
105 | (1) |
|
|
106 | (1) |
|
7.9.8 Rotating Points About an Axis |
|
|
106 | (3) |
|
7.9.9 Roll, Pitch and Yaw Quaternions |
|
|
109 | (2) |
|
7.9.10 Quaternions in Matrix Form |
|
|
111 | (1) |
|
7.9.11 Frames of Reference |
|
|
112 | (1) |
|
7.10 Transforming Vectors |
|
|
113 | (1) |
|
|
114 | (4) |
|
7.12 Perspective Projection |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
121 | (14) |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
121 | (3) |
|
8.4 Non-linear Interpolation |
|
|
124 | (6) |
|
8.4.1 Trigonometric Interpolation |
|
|
124 | (1) |
|
8.4.2 Cubic Interpolation |
|
|
125 | (5) |
|
8.5 Interpolating Vectors |
|
|
130 | (3) |
|
8.6 Interpolating Quaternions |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (24) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (7) |
|
9.5.1 Bernstein Polynomials |
|
|
136 | (4) |
|
9.5.2 Quadratic Bezier Curves |
|
|
140 | (1) |
|
9.5.3 Cubic Bernstein Polynomials |
|
|
141 | (2) |
|
9.6 A Recursive Bezier Formula |
|
|
143 | (1) |
|
9.7 Bezier Curves Using Matrices |
|
|
144 | (3) |
|
9.7.1 Linear Interpolation |
|
|
145 | (2) |
|
|
147 | (5) |
|
|
148 | (2) |
|
|
150 | (1) |
|
9.8.3 Non-uniform B-Splines |
|
|
151 | (1) |
|
9.8.4 Non-uniform Rational B-Splines |
|
|
151 | (1) |
|
|
152 | (5) |
|
9.9.1 Planar Surface Patch |
|
|
152 | (1) |
|
9.9.2 Quadratic Bezier Surface Patch |
|
|
153 | (2) |
|
9.9.3 Cubic Bezier Surface Patch |
|
|
155 | (2) |
|
|
157 | (2) |
|
|
159 | (44) |
|
|
159 | (1) |
|
|
159 | (8) |
|
|
159 | (1) |
|
10.2.2 Intercept Theorems |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
10.2.5 Centre of Gravity of a Triangle |
|
|
162 | (1) |
|
10.2.6 Isosceles Triangle |
|
|
162 | (1) |
|
10.2.7 Equilateral Triangle |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
10.2.10 Theorem of Pythagoras |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
165 | (2) |
|
10.3 2D Analytic Geometry |
|
|
167 | (4) |
|
10.3.1 Equation of a Straight Line |
|
|
167 | (1) |
|
10.3.2 The Hessian Normal Form |
|
|
168 | (1) |
|
10.3.3 Space Partitioning |
|
|
169 | (1) |
|
10.3.4 The Hessian Normal Form from Two Points |
|
|
170 | (1) |
|
|
171 | (3) |
|
10.4.1 Intersecting Straight Lines |
|
|
171 | (1) |
|
10.4.2 Intersecting Line Segments |
|
|
172 | (2) |
|
10.5 Point Inside a Triangle |
|
|
174 | (3) |
|
10.5.1 Area of a Triangle |
|
|
174 | (2) |
|
10.5.2 Hessian Normal Form |
|
|
176 | (1) |
|
10.6 Intersection of a Circle with a Straight Line |
|
|
177 | (2) |
|
|
179 | (4) |
|
10.7.1 Equation of a Straight Line |
|
|
179 | (1) |
|
10.7.2 Intersecting Two Straight Lines |
|
|
180 | (3) |
|
|
183 | (8) |
|
10.8.1 Cartesian Form of the Plane Equation |
|
|
183 | (3) |
|
10.8.2 General Form of the Plane Equation |
|
|
186 | (1) |
|
10.8.3 Parametric Form of the Plane Equation |
|
|
186 | (1) |
|
10.8.4 Converting from the Parametric to the General Form |
|
|
187 | (2) |
|
10.8.5 Plane Equation from Three Points |
|
|
189 | (2) |
|
|
191 | (10) |
|
10.9.1 Intersection of Three Planes |
|
|
194 | (2) |
|
10.9.2 Angle Between Two Planes |
|
|
196 | (2) |
|
10.9.3 Angle Between a Line and a Plane |
|
|
198 | (1) |
|
10.9.4 Intersection of a Line with a Plane |
|
|
199 | (2) |
|
|
201 | (2) |
|
11 Barycentric Coordinates |
|
|
203 | (28) |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
203 | (2) |
|
11.4 Ratios and Proportion |
|
|
205 | (1) |
|
|
206 | (5) |
|
11.6 Linear Interpolation |
|
|
211 | (7) |
|
11.7 Convex Hull Property |
|
|
218 | (1) |
|
|
218 | (8) |
|
|
226 | (2) |
|
11.10 Bezier Curves and Patches |
|
|
228 | (1) |
|
|
229 | (2) |
|
|
231 | (34) |
|
|
231 | (1) |
|
|
231 | (1) |
|
12.3 Symmetric and Antisymmetric Functions |
|
|
231 | (2) |
|
12.4 Trigonometric Foundations |
|
|
233 | (1) |
|
12.5 Vectorial Foundations |
|
|
234 | (1) |
|
12.6 Inner and Outer Products |
|
|
235 | (1) |
|
12.7 The Geometric Product in 2D |
|
|
236 | (2) |
|
12.8 The Geometric Product in 3D |
|
|
238 | (2) |
|
12.9 The Outer Product of Three 3D Vectors |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
12.12 Grades, Pseudoscalars and Multivectors |
|
|
243 | (1) |
|
12.13 Redefining the Inner and Outer Products |
|
|
244 | (1) |
|
12.14 The Inverse of a Vector |
|
|
244 | (2) |
|
12.15 The Imaginary Properties of the Outer Product |
|
|
246 | (2) |
|
|
248 | (1) |
|
12.17 The Relationship Between the Vector Product and the Outer Product |
|
|
249 | (1) |
|
12.18 The Relationship between Quaternions and Bivectors |
|
|
249 | (1) |
|
12.19 Reflections and Rotations |
|
|
250 | (4) |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
252 | (2) |
|
|
254 | (3) |
|
12.21 Applied Geometric Algebra |
|
|
257 | (6) |
|
|
263 | (2) |
|
|
265 | (54) |
|
|
265 | (1) |
|
|
265 | (1) |
|
13.3 Small Numerical Quantities |
|
|
265 | (2) |
|
13.4 Equations and Limits |
|
|
267 | (8) |
|
13.4.1 Quadratic Function |
|
|
267 | (1) |
|
|
268 | (2) |
|
13.4.3 Functions and Limits |
|
|
270 | (2) |
|
13.4.4 Graphical Interpretation of the Derivative |
|
|
272 | (1) |
|
13.4.5 Derivatives and Differentials |
|
|
273 | (1) |
|
13.4.6 Integration and Antiderivatives |
|
|
273 | (2) |
|
|
275 | (1) |
|
13.6 Differentiating Groups of Functions |
|
|
276 | (11) |
|
|
276 | (2) |
|
13.6.2 Function of a Function |
|
|
278 | (3) |
|
|
281 | (5) |
|
13.6.4 Function Quotients |
|
|
286 | (1) |
|
13.7 Differentiating Implicit Functions |
|
|
287 | (4) |
|
13.8 Differentiating Exponential and Logarithmic Functions |
|
|
291 | (4) |
|
13.8.1 Exponential Functions |
|
|
291 | (2) |
|
13.8.2 Logarithmic Functions |
|
|
293 | (2) |
|
13.9 Differentiating Trigonometric Functions |
|
|
295 | (5) |
|
13.9.1 Differentiating tan |
|
|
295 | (1) |
|
13.9.2 Differentiating CSC |
|
|
296 | (1) |
|
13.9.3 Differentiating sec |
|
|
296 | (2) |
|
13.9.4 Differentiating cot |
|
|
298 | (1) |
|
13.9.5 Differentiating arcsin, arccos and arctan |
|
|
298 | (1) |
|
13.9.6 Differentiating arccsc, arcsec and arccot |
|
|
299 | (1) |
|
13.10 Differentiating Hyperbolic Functions |
|
|
300 | (2) |
|
13.10.1 Differentiating sinh, cosh and tanh |
|
|
301 | (1) |
|
|
302 | (1) |
|
13.12 Higher Derivatives of a Polynomial |
|
|
303 | (2) |
|
13.13 Identifying a Local Maximum or Minimum |
|
|
305 | (2) |
|
13.14 Partial Derivatives |
|
|
307 | (7) |
|
13.14.1 Visualising Partial Derivatives |
|
|
311 | (1) |
|
13.14.2 Mixed Partial Derivatives |
|
|
312 | (2) |
|
|
314 | (2) |
|
|
316 | (1) |
|
|
317 | (2) |
|
|
319 | (42) |
|
|
319 | (1) |
|
|
319 | (1) |
|
14.3 Integration Techniques |
|
|
320 | (24) |
|
14.3.1 Continuous Functions |
|
|
320 | (1) |
|
14.3.2 Difficult Functions |
|
|
320 | (1) |
|
14.3.3 Trigonometric Identities |
|
|
321 | (3) |
|
|
324 | (1) |
|
14.3.5 Completing the Square |
|
|
325 | (1) |
|
14.3.6 The Integrand Contains a Derivative |
|
|
326 | (3) |
|
14.3.7 Converting the Integrand into a Series of Fractions |
|
|
329 | (1) |
|
14.3.8 Integration by Parts |
|
|
330 | (7) |
|
14.3.9 Integration by Substitution |
|
|
337 | (4) |
|
14.3.10 Partial Fractions |
|
|
341 | (3) |
|
|
344 | (1) |
|
|
345 | (7) |
|
14.6 Positive and Negative Areas |
|
|
352 | (2) |
|
14.7 Area Between Two Functions |
|
|
354 | (1) |
|
14.8 Areas with the y-Axis |
|
|
355 | (1) |
|
14.9 Area with Parametric Functions |
|
|
356 | (2) |
|
|
358 | (2) |
|
14.10.1 Domains and Intervals |
|
|
358 | (1) |
|
|
359 | (1) |
|
|
360 | (1) |
|
|
361 | (18) |
|
|
361 | (1) |
|
15.2 Area of Regular Polygon |
|
|
361 | (1) |
|
|
362 | (1) |
|
15.4 Dihedral Angle of a Dodecahedron |
|
|
363 | (1) |
|
15.5 Vector Normal to a Triangle |
|
|
364 | (1) |
|
15.6 Area of a Triangle Using Vectors |
|
|
365 | (1) |
|
15.7 General Form of the Line Equation from Two Points |
|
|
365 | (1) |
|
15.8 Angle Between Two Straight Lines |
|
|
366 | (1) |
|
15.9 Test if Three Points Lie on a Straight Line |
|
|
367 | (1) |
|
15.10 Position and Distance of the Nearest Point on a Line to a Point |
|
|
367 | (3) |
|
15.11 Position of a Point Reflected in a Line |
|
|
370 | (2) |
|
15.12 Intersection of a Line and a Sphere |
|
|
372 | (4) |
|
15.13 Sphere Touching a Plane |
|
|
376 | (2) |
|
|
378 | (1) |
|
|
379 | (2) |
Appendix A Limit of (sinθ)/θ |
|
381 | (4) |
Appendix B Integrating cosnθ |
|
385 | (2) |
Index |
|
387 | |