Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mathematics and Technology

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 52,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The authors present useful, elegant mathematical concepts such as Markov chains, function iteration and simple groups, and develop these concepts in the context of applications to important, practical problems such as web-navigation, data compression and error correcting codes. The authors highlight how mathematical modeling, together with the power of mathematical tools and abstraction, have been crucial for innovation in technology. The topics are presented with clarity, and the mathematics is expressed in a straightforward manner. Numerous exercises at the end of every section provide practice and reinforce the material in the chapter. An engaging quality of this book is that the authors also put the mathematical material in a historical context and not just a practical one. Mathematics and Technology is intended for undergraduate students, instructors and high school teachers. Prerequisites are essentially linear algebra and Euclidean geometry. Additionally, its lack of calculus centricity as well as a clear indication of the more difficult topics and relatively advanced references make it suitable for any curious individual with a decent command of high school math.

This book introduces the student to numerous modern applications of mathematics in technology. The authors write with clarity and present the mathematics in a clear and straightforward way making it an interesting and easy book to read. Numerous exercises at the end of every section provide practice and reinforce the material in the chapter. An engaging quality of this book is that the authors also present the mathematical material in a historical context and not just the practical one.Mathematics and Technology is intended for undergraduate students in mathematics, instructors and high school teachers. Additionally, its lack of calculus centricity as well as a clear indication of the more difficult topics and relatively advanced references make it suitable for any curious individual with a decent command of high school math.

Recenzijas

From the reviews:





"Christiane Rousseau and Yvan Saint-Aubin here present a valuable collection of diverse and detailed applied mathematics examples. presented to work as a standalone guide to mathematics at work today, usable for self-study and enlightenment or as a text for coursework. Chapters conclude with a rich collection of exercises followed by references for further study. together with the clear signposts to help students get around and through the more difficult topics, make Mathematics and Technology suitable for any diligent reader ." (Tom Schulte, MAA Online, February, 2009)

"This book takes a more detailed view of mathematics in action, in several areas of technology . This is an excellent book for a varied audience. This book will also be attractive to college students and to researchers in mathematics, computer science (CS), and technology, who want to acquire a more thorough understanding of the applications covered in the book. the authors give several pointers and suggestions to instructors. I like this book and I recommend it." (Edgar R. Chavez, ACM Computing Reviews, June, 2009)

The authors highlight how mathematical modeling, together with the power of mathematical tools, has been crucial for innovation in technology. The text is written for students who have a familiarity with Euclidean geometry and have mastered multivariable calculus, linear algebra, and elementary probability theory. undergraduates in their junior or senior years are the ideal audience for the course. (Tzvetan Semerdjiev, Zentralblatt MATH, Vol. 1211, 2011)

Preface v
Positioning on Earth and in Space
1(44)
Introduction
1(1)
Global Positioning System
2(10)
Some Facts about GPS
2(1)
The Theory Behind GPS
3(3)
Dealing with Practical Difficulties
6(6)
How Hydro-Quebec Manages Lightning Strikes
12(7)
Locating Lightning Strikes
12(3)
Threshold and Quality of Detection
15(3)
Long-Term Risk Management
18(1)
Linear Shift Registers
19(8)
The Structure of the Field Fr2
22(2)
Proof of Theorem 1.4
24(3)
Cartography
27(9)
Exercises
36(9)
References
43(2)
Friezes and Mosaics
45(40)
Friezes and Symmetries
48(4)
Symmetry Group and Affine Transformations
52(6)
The Classification Theorem
58(6)
Mosaics
64(3)
Exercises
67(18)
References
83(2)
Robotic Motion
85(34)
Introduction
85(6)
Moving a Solid in the Plane
87(2)
Some Thoughts on the Number of Degrees of Freedom
89(2)
Movements That Preserve Distances and Angles
91(3)
Properties of Orthogonal Matrices
94(9)
Change of Basis
103(3)
Different Frames of Reference for a Robot
106(5)
Exercises
111(8)
References
117(2)
Skeletons and Gamma-Ray Radiosurgery
119(36)
Introduction
119(1)
Definition of Two-Dimensional Region Skeletons
120(10)
Three-Dimensional Regions
130(2)
The Optimal Surgery Algorithm
132(2)
A Numerical Algorithm
134(8)
The First Part of the Algorithm
135(4)
Second Part of the Algorithm
139(1)
Proof of Proposition 4.17
140(2)
Other Applications of Skeletons
142(1)
The Fundamental Property of the Skeleton
143(4)
Exercises
147(8)
References
153(2)
Savings and Loans
155(18)
Banking Vocabulary
155(1)
Compound Interest
156(3)
A Saving Plan
159(2)
Borrowing Money
161(3)
Appendix: Mortagage Payment Tables
164(4)
Exercises
168(5)
References
171(2)
Error-Correcting Codes
173(36)
Introduction: Digitizing, Detecting and Correcting
173(5)
The Finite Field F2
178(1)
The C(7,4) Hamming Code
179(3)
C(2k - 1, 2k- k - 1) Hamming Codes
182(3)
Finite Fields
185(8)
Reed-Solomon Codes
193(5)
Appendix: The Scalar Product and Finite Fields
198(2)
Exercises
200(9)
References
207(2)
Public Key Cryptography
209(32)
Introduction
209(1)
A Few Tools from Number Theory
210(3)
The Idea behind RSA
213(8)
Constructing Large Primes
221(10)
The Shor Factorization Algorithm
231(3)
Exercises
234(7)
References
239(2)
Random-Number Generators
241(24)
Introduction
241(4)
Linear Shift Registers
245(3)
Fp-Linear Generators
248(7)
The Case p = 2
248(5)
A Lesson on Gambling Machines
253(1)
The General Case
253(2)
Combined Multiple Recursive Generators
255(2)
Conclusion
257(1)
Exercises
258(7)
References
263(2)
Google and the PageRank Algorithm
265(26)
Search Engines
265(3)
The Web and Markov Chains
268(10)
An Improved PageRank
278(3)
The Frobenius Theorem
281(3)
Exercises
284(7)
References
289(2)
Why 44,100 Samples per Second?
291(34)
Introduction
291(1)
The Musical Scale
292(4)
The Last Note (Introduction to Fourier Analysis)
296(11)
The Nyquist Frequency and the Reason for 44,100
307(10)
Exercises
317(8)
References
323(2)
Image Compression: Iterated Function Systems
325(44)
Introduction
325(2)
Affine Transformations in the Plane
327(3)
Iterated Function Systems
330(6)
Iterated Contractions and Fixed Points
336(4)
The Hausdorff Distance
340(5)
Fractal Dimension
345(5)
Photographs as Attractors
350(11)
Exercises
361(8)
References
367(2)
Image Compression: The JPEG Standard
369(34)
Introduction
369(3)
Zooming in on a JPEG-Compressed Digital Image
372(1)
The Case of 2 x 2 Blocks
373(5)
The Case of N x N Blocks
378(10)
The JPEG Standard
388(8)
Exercises
396(7)
References
401(2)
The DNA Computer
403(44)
Introduction
403(2)
Adleman's Hamiltonian Path Problem
405(4)
Turing Machines and Recursive Functions
409(17)
Turing Machines
409(7)
Primitive Recursive Functions and Recursive Functions
416(10)
Turing Machines and Insertion-Deletion Systems
426(4)
NP-Complete Problems
430(5)
The Hamiltonian Path Problem
430(1)
Satisfiability
431(4)
More on DNA Computers
435(6)
The Hamiltonian Path Problem and Insertion-Deletion Systems
435(1)
Current Limits
435(2)
A Few Biological Explanations Concerning Adleman's Experiment
437(4)
Exercises
441(6)
References
445(2)
Calculus of Variations
447(54)
The Fundamental Problem of Calculus of Variations
448(3)
Euler-Lagrange Equation
451(4)
Fermat's Principle
455(2)
The Best Half-Pipe
457(3)
The Fastest Tunnel
460(5)
The Tautochrone Property of the Cycloid
465(3)
An Isochronous Device
468(3)
Soap Bubbles
471(4)
Hamilton's Principle
475(4)
Isoperimetric Problems
479(7)
Liquid Mirrors
486(4)
Exercises
490(11)
References
499(2)
Science Flashes
501(68)
The Laws of Reflection and Refraction
501(7)
A Few Applications of Conics
508(13)
A Remarkable Property of the Parabola
508(10)
The Ellipse
518(2)
The Hyperbola
520(1)
A Few Clever Tools for Drawing Conics
521(1)
Quadratic Surfaces in Architecture
521(7)
Optimal Cellular Antenna Placement
528(4)
Voronoi Diagrams
532(5)
Computer Vision
537(2)
A Brief Look at Computer Architecture
539(5)
Regular Pentagonal Tiling of the Spahere
544(7)
Laying Out a Highway
551(1)
Exercises
552(17)
References
567(2)
Index 569