Atjaunināt sīkdatņu piekrišanu

McGraw-Hill Education Trigonometry Review and Workbook [Mīkstie vāki]

  • Formāts: Paperback / softback, 240 pages, height x width x depth: 274x213x12 mm, weight: 558 g, 100 Illustrations
  • Izdošanas datums: 04-Jul-2019
  • Izdevniecība: McGraw-Hill Education
  • ISBN-10: 126012892X
  • ISBN-13: 9781260128925
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 16,99 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 240 pages, height x width x depth: 274x213x12 mm, weight: 558 g, 100 Illustrations
  • Izdošanas datums: 04-Jul-2019
  • Izdevniecība: McGraw-Hill Education
  • ISBN-10: 126012892X
  • ISBN-13: 9781260128925
Citas grāmatas par šo tēmu:
This engaging review guide and workbook is the ideal tool for sharpening your Trigonometry skills!

This review guide and workbook will help you strengthen your Trigonometry knowledge, and it will enable you to develop new math skills to excel in your high school classwork and on standardized tests. Clear and concise explanations will walk you step by step through each essential math concept. 500 practical review questions, in turn, provide extensive opportunities for you to practice your new skills. If you are looking for material based on national or state standards, this book is your ideal study tool!

Features:

•Aligned to national standards, including the Common Core State Standards, as well as the standards of non-Common Core states and Canada
•Designed to help you excel in the classroom and on standardized tests
•Concise, clear explanations offer step-by-step instruction so you can easily grasp key concepts
•You will learn how to apply Trigonometry to practical situations
•500 review questions provide extensive opportunities for you to practice what you’ve learned

Introduction xi
Chapter 1 Angles and Their Measure
1(10)
Definitions and Terminology
1(3)
Complementary and Supplementary Angles
4(1)
Coterminal Angles and Reference Angles
4(3)
Radian Measure
7(4)
Chapter 2 Concepts from Geometry
11(8)
The Sum of a Triangle's Angles and the Triangle Inequality
11(3)
The Pythagorean Theorem
14(5)
Chapter 3 Right Triangle Trigonometry
19(6)
Trigonometric Ratios of an Acute Angle in a Right Triangle
19(3)
Trigonometric Ratios of Special Acute Angles
22(3)
Chapter 4 General Right Triangles
25(6)
Solving Right Triangles
25(2)
Applications of Right Triangle Trigonometry
27(4)
Chapter 5 Oblique Triangles
31(18)
Law of Cosines (SAS or SSS)
31(4)
Law of Sines (AS A or A AS)
35(4)
Law of Sines Ambiguous Case (SSA)
39(2)
Solving General Triangles
41(5)
Area of a General Triangle Using Trigonometry
46(3)
Chapter 6 Trigonometric Functions of Any Angle
49(20)
Definitions of the Trigonometric Functions
49(4)
Trigonometric Functions of Complementary Angles
53(3)
The Unit Circle
56(3)
Trigonometric Functions of Quadrantal Angles
59(2)
Trigonometric Functions of Coterminal Angles
61(2)
Trigonometric Functions of Negative Angles
63(1)
Using Reference Angles to Find the Values of Trigonometric Functions
64(5)
Chapter 7 Trigonometric Identities
69(18)
Definition and Guidelines
69(2)
The Reciprocal and Ratio Identities
71(1)
The Pythagorean Identities
72(2)
Sum and Difference Formulas for the Sine Function
74(2)
Sum and Difference Formulas for the Cosine Function
76(2)
Sum and Difference Formulas for the Tangent Function
78(2)
Reduction Formulas
80(1)
Double-Angle Identities
81(2)
Half-Angle Identities
83(2)
Sum-to-Product Identities
85(1)
Product-to-Sum Identities
86(1)
Chapter 8 Trigonometric Functions of Real Numbers
87(6)
Definitions and Basic Concepts of Trigonometric Functions of Real Numbers
87(2)
Periodic Functions
89(4)
Chapter 9 Graphs of the Sine Function
93(10)
The Graph of y = sin x
93(2)
The Graph of y = A sin x
95(2)
The Graph of y = A sin Bx
97(3)
The Graph of y = A sin (Bx -- C)
100(3)
Chapter 10 The Graph of y = A sin (Bx -- C) + D
103(10)
Graphs of the Cosine Function
107(1)
The Graph of y = cos x
107(2)
The Graph of y = A cos (Bx -- C) + D
109(4)
Chapter 11 Graphs of the Tangent Function
113(4)
The Graph of y = tan x
113(1)
The Graph of y = A tan (Bx -- C) + D
114(3)
Chapter 12 Graphs of the Secant, Cosecant, and Cotangent Functions
117(8)
The Graph of y = A sec (Bx -- C) + D
117(2)
The Graph of y = A esc (Bx -- C) + D
119(2)
The Graph of y = A cot (Bx -- C) + D
121(4)
Chapter 13 Inverse Trigonometric Functions
125(10)
The Inverse Sine, Cosine, and Tangent Functions
125(5)
The Inverse Secant, Cosecant, and Cotangent Functions
130(5)
Chapter 14 Solving Trigonometric Equations
135(8)
Basic Concepts of Trigonometric Equations
135(4)
Solving for Exact Solutions to Trigonometric Equations
139(2)
Solving for Approximate Solutions to Trigonometric Equations
141(2)
Chapter 15 Trigonometric Form of a Complex Number
143(10)
Definition of the Trigonometric Form of a Complex Number
143(2)
The Product and Quotient of Trigonometric Forms of Complex Numbers
145(3)
De Moivre's Theorem
148(1)
Roots of Complex Numbers
149(4)
Chapter 16 Polar Coordinates
153(1)
Basic Concepts of Polar Coordinates
153(2)
Converting Between Coordinate Systems
155(2)
Graphing Equations in Polar Form
157(1)
GLOSSARY
Glossary
158(1)
APPENDIX A Calculator Instructions for Trigonometry Using the TI-84 Plus
159(10)
General Usage
169(1)
Setting the Calculator to Degree or Radian Mode
170(1)
Overriding Radian or Degree Mode
170(1)
Evaluating Trigonometric Functions
170(3)
Determining Inverse Trigonometric Values
173(3)
Graphing Polar Equations
176(3)
APPENDIX B Trigonometric Identities
179(2)
APPENDIX C The Complex Plane
181(2)
Answer Key 183