Atjaunināt sīkdatņu piekrišanu

E-grāmata: Measure Theory and Fine Properties of Functions

(University of California, Berkeley, USA)
  • Formāts: 339 pages
  • Sērija : Textbooks in Mathematics
  • Izdošanas datums: 04-Mar-2025
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040311479
  • Formāts - PDF+DRM
  • Cena: 93,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 339 pages
  • Sērija : Textbooks in Mathematics
  • Izdošanas datums: 04-Mar-2025
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040311479

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This popular textbook provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. The book emphasizes the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions. This book gathers together the essentials of real analysis on Rn, with particular emphasis on integration and differentiation"--

This popular textbook provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. The book emphasizes the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions.



This popular textbook provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space, with emphasis upon the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions.

Measure Theory and Fine Properties of Functions, Second Edition includes many interesting items working mathematical analysts need to know, but are rarely taught. Topics covered include a review of abstract measure theory, including Besicovitch’s covering theorem, Rademacher’s theorem (on the differentiability a.e. of Lipschitz continuous functions), the area and coarea formulas, the precise structure of Sobolev and BV functions, the precise structure of sets of finite perimeter, and Aleksandrov’s theorem (on the twice differentiability a.e. of convex functions).

The topics are carefully selected, and the proofs are succinct, but complete. This book provides ideal reading for mathematicians and graduate students in pure and applied mathematics. The authors assume readers are at least fairly conversant with both Lebesgue measure and abstract measure theory, and the expository style reflects this expectation. The book does not offer lengthy heuristics or motivation, but as compensation presents all the technicalities of the proofs.

This new Second Edition has been updated to provide corrections and minor edits from the previous Revised Edition, with countless improvements in notation, format and clarity of exposition. Also new is a section on the sub differentials of convex functions, and in addition the bibliography has been updated.

1 Measure Theory

2 Hausdorff Measures

3 Area and Coarea Formulas

4 Sobolev Functions

5 Functions of Bounded Variation, Sets of Finite Perimeter

6 Differentiability, Approximation by C1 Functions

Lawrence C. Evans, University of California, Berkeley, USA

Ronald F. Gariepy, University of Kentucky, Lexington, USA