Atjaunināt sīkdatņu piekrišanu

Measure Theory And Functional Analysis [Hardback]

(Washington Univ In St Louis, Usa)
  • Formāts: Hardback, 212 pages
  • Izdošanas datums: 18-Sep-2013
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981450856X
  • ISBN-13: 9789814508568
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 212 pages
  • Izdošanas datums: 18-Sep-2013
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981450856X
  • ISBN-13: 9789814508568
Citas grāmatas par šo tēmu:
The focus of the graduate textbook is the interplay between topology, measure, and Hilbert space exhibited in the spectral theorem and its generalizations. Readers need to be familiar with metric spaces and abstract real and complex vector spaces. The objects of central importance all seem to be essentially countable in one way or another, he says, so whenever possible he assumes that topological spaces are metrizable, that measure spaces of sigma-finite, that Banach spaces are either separable or have separable preduals, and other matters to eliminate uncountable settings. His topics are topological spaces, measure and integration, Banach spaces, dual Banach spaces, and spectral theory. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

This book provides an introduction to measure theory and functional analysis suitable for a beginning graduate course, and is based on notes the author had developed over several years of teaching such a course. It is unique in placing special emphasis on the separable setting, which allows for a simultaneously more detailed and more elementary exposition, and for its rapid progression into advanced topics in the spectral theory of families of self-adjoint operators. The author's notion of measurable Hilbert bundles is used to give the spectral theorem a particularly elegant formulation not to be found in other textbooks on the subject.
Preface v
1 Topological Spaces
1(34)
1.1 Countability
1(3)
1.2 Topologies
4(5)
1.3 Continuous functions
9(4)
1.4 Metrizability and separability
13(4)
1.5 Compactness
17(4)
1.6 Separation principles
21(3)
1.7 Local compactness
24(3)
1.8 Sequential convergence
27(4)
1.9 Exercises
31(4)
2 Measure and Integration
35(40)
2.1 Measurable spaces and functions
35(4)
2.2 Positive measures
39(4)
2.3 Premeasures
43(4)
2.4 Lebesgue measure
47(5)
2.5 Lebesgue integration
52(7)
2.6 Product measures
59(4)
2.7 Scalar-valued measures
63(8)
2.8 Exercises
71(4)
3 Banach Spaces
75(44)
3.1 Normed vector spaces
75(8)
3.2 Basic constructions
83(6)
3.3 The Hahn-Banach theorem
89(6)
3.4 The Banach isomorphism theorem
95(5)
3.5 C(X) and Co(X) spaces
100(4)
3.6 Subalgebras
104(5)
3.7 Ideals and homomorphisms
109(6)
3.8 Exercises
115(4)
4 Dual Banach Spaces
119(38)
4.1 Weak* topologies
119(3)
4.2 Duality
122(5)
4.3 Separation theorems
127(4)
4.4 The Krein-Milman theorem
131(3)
4.5 The Riesz-Markov theorem
134(7)
4.6 L1 and L∞ spaces
141(7)
4.7 Lp spaces
148(5)
4.8 Exercises
153(4)
5 Spectral Theory
157(40)
5.1 Hilbert spaces
157(7)
5.2 Hilbert bundles
164(8)
5.3 Operators
172(4)
5.4 The continuous functional calculus
176(6)
5.5 The spectral theorem
182(5)
5.6 Abelian operator algebras
187(5)
5.7 Exercises
192(5)
Notation Index 197(2)
Subject Index 199