Atjaunināt sīkdatņu piekrišanu

E-grāmata: Measurement of Gravitomagnetism: A Challenging Enterprise

Edited by
  • Formāts: 299 pages
  • Izdošanas datums: 01-Feb-2018
  • Izdevniecība: Nova Science Publishers Inc
  • ISBN-13: 9781621006145
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 279,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 299 pages
  • Izdošanas datums: 01-Feb-2018
  • Izdevniecība: Nova Science Publishers Inc
  • ISBN-13: 9781621006145
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is intended to give an updated overview on the state-of-the art of the theoretical and experimental efforts aimed to detect the elusive Lense-Thirring effect in the gravitational field of the Earth. The reader, after a robust introduction to the historical (Chapter 2) and theoretical (Chapters 3-5) aspects of the subject, will get acquainted with the subtleties required to design suitable observables which are able to sufficiently enhance the signal-to-noise ratio. Moreover, he/she should be able to follow autonomously the exciting developments which, hopefully, will take place in the near future if and when reliable few percent tests of this prediction of general relativity should become available. In an Earth-space based experiment with artificial satellites a good compromise between the need of reducing the impact of the systematic errors of gravitational origin and of non-gravitational origin must be obtained; this is not an easy task because such requirements are often in conflict one with each other. Consequently, a great attention is paid to elucidate many classical perturbing effects which, if not carefully modelled and accounted for in the data analysis, may alias the recovery of the gravitomagnetic signature. Indeed, we are dealing with a fundamental test of general relativity which must be honest, robust and based on solid error analysis. A critical and detailed discussion of the latest test with the LAGEOS satellites is included. The book will also be useful for better understanding the interplay among various geodetic, geophysical, general relativistic, astronomical and matter-wave interferometric effects which occurs in the weak-field and slow-motion approximation and which will become increasingly important in the near future thanks to the improvements in the accuracy of the orbital reconstruction process.
List of figures
xiii
List of tables
xvi
Preface xvii
H.J. Schmidt
The Usual Decomposition xviii
The Decomposition Using Trace-Less Parts xix
Decomposition Into Two Parts xix
Decomposition Into Divergence-Free Parts xx
I. Overview
1(26)
Introduction
3(10)
L. Iorio
The Experimental Basis of General Relativity
3(1)
Testing Gravitomagnetism
4(3)
The Gravitomagnetic Field in Astrophysical Scenarios
4(1)
The Gravitomagnetic Field of the Earth
4(3)
The Gravitomagnetic Fields of the Sun and of Mars
7(1)
Lageos and GP-B
7(2)
The Lageos Tests
7(2)
The GP-B Test
9(1)
Is It Really Necessary to Perform Experiments to Directly Measure Gravitomagnetism?
9(2)
Purpose of the Book
11(1)
Acknowledgements
11(2)
Mach's Principle
13(14)
H. Lichtenegger
B. Mashhoon
Introduction
13(1)
Absolute Versus Relative
14(6)
Mach's Principle and General Relativity
20(1)
Gravitomagnetism
21(2)
Tact of the Natural Investigator
23(1)
Quantum Theory and Inertia
24(1)
Discussion
25(2)
II. Theory
27(74)
Gravitoelectromagnetism: A Brief Review
29(12)
B. Mashhoon
Introduction
29(1)
Linear Perturbation Approach to GEM
30(2)
Gravitational Larmor Theorem
32(2)
Spacetime Curvature Approach to GEM
34(3)
Spin-Rotation-Gravity Coupling
37(4)
Analogies and Differences between Gravito-Electromagnetism and Electro-magnetism
41(10)
A. Tartaglia
M.L. Ruggiero
Introduction
41(1)
Direct Deduction of the Gravito-Electromagnetic Faraday-Henry Law
42(3)
Is There a Gravito-Magnetic Meissner Effect?
45(2)
Inconsistencies of the Gravito-Electromagnetic Analogy
47(1)
Discussion and Conclusions
48(3)
Quasi-Inertial Coordinates
51(22)
N. Ashby
Introduction
51(1)
Fermi-Walker Transport of a Tetrad
52(3)
Gyroscope Held Fixed
55(2)
Geodetic Precession of Freely-Falling Gyroscope
57(1)
Construction of Quasi-Inertial Coordinates
58(6)
The Basis Tetrad
61(1)
Coordinate Transformations
61(1)
Metric in Quasi-Inertial Frame
62(2)
Spin Precession in the Quasi-Inertial Frame
64(1)
Aberration
65(2)
Two Sources-Sun and Earth
67(2)
Local Inertial Frame of Earth
69(2)
Summary
71(2)
The Lense-Thirring Effect on the Orbit of a Test Particle
73(14)
L. Iorio
The Orbit of a Test Particle in Space
73(3)
The Derivation of the Lense-Thirring Effect on the Orbit of a Test Particle: the Lagrangian Approach
76(4)
The Derivation of the Lense-Thirring Effect on the Orbit of a Test Particle: the Gaussian Approach
80(4)
An Extension of the Gravitational Larmor Theorem
84(1)
The Gravitomagnetic Stern-Gerlach Force
85(2)
Post-Newtonian Orbital Perturbations
87(14)
H. Lichtenegger
L. Iorio
Introduction
87(1)
The Equations of Motion
88(2)
The Perturbing Potential
90(1)
Orbital Perturbations
91(5)
Precession of the Pericenter
91(1)
Precession of the Orbital Plane
92(1)
The Change in the Mean Motion
93(3)
Time Difference Induced by Precession
96(1)
Time Difference due to Pericenter Precession
96(1)
Time Difference due to Orbital Precession
97(1)
The Sidereal Period and the Gravitomagnetic Clock Effect
97(2)
An Alternative Derivation of the Gravitomagnetic Sidereal Effect for Circular and Equatorial Orbits
99(2)
III. Experiment
101(136)
Recent Developments in Testing Gravitomagnetism with Satellite Laser Ranging
103(34)
L. Iorio
Introduction
103(3)
The Gravitoelectric Effects
104(1)
The Gravitomagnetic Effects
104(2)
The Major Systematic Errors
106(6)
The Non-Gravitational Errors
106(1)
The Gravitational Errors
106(6)
Some New Observables for Measuring the Lense-Thirring Effect
112(2)
The Supplementary Orbital Planes Option
112(1)
Other Approaches
113(1)
The Impact of the 1st Generation of Earth Gravity Models from Champ and Grace
114(4)
The Full-Range Even Zonal Harmonics Observables
114(1)
The Partial-Range Even Zonal Harmonics Observables
115(1)
Combinations With the Other Existing Geodetic Satellites
116(2)
The Use of Data from the Altimeter Satellite Jason-1
118(6)
A Possible Combination of Nodes and the Gravitational Errors
119(1)
The Impact of the Observational Errors of Ajisai and Jason-1
119(1)
The Impact of the Non-Gravitational Perturbations of Ajisai
119(2)
The Impact of the Non-Gravitational Perturbations on Jason-1
121(3)
The 2nd Generation of the Grace-only Earth Gravity Models and the First Champ/Grace Combined Model
124(1)
Eigen-Grace02s
124(1)
GGM02S
125(1)
Eigen-CG01C
125(1)
A Quantitative Assessment of the Impact of the Secular Variations of the Even Zonal Harmonics on the Performed Test with the Nodes of the Lageos Satellites
125(9)
Numerical Simulations
127(4)
The jeff4
131(2)
Summary
133(1)
Discussion and Conclusions
134(3)
The Use of Ajisai and Jason-1
134(1)
The Lageos-Lageos II Node-Node-Perigee Combination
135(1)
A New Dedicated Satellite?
135(2)
The Lageos Satellites: Non-Gravitational Perturbations and the Lense-Thirring Effect
137(20)
D.M. Lucchesi
Introduction
138(1)
The Osculating Orbital Elements and the Gaussian Perturbativc Equations
139(2)
The Non-Gravitational Perturbations: A Brief Review
141(10)
Visible Radiation Effects: Direct Solar Radiation Pressure
141(2)
Visible Radiation Effects: Earth Albedo
143(1)
The Lageos Satellites Spin-Axis Modeling
144(1)
Thermal Thrust Effects
145(5)
The Asymmetric Reflectivity Effect
150(1)
Numerical Simulation
151(2)
The Lense-Thirring Effect Error Budget and the NGP
153(1)
Conclusions
154(3)
On the Impossibility of Using the Node of Nearly Polar Satellites for Measuring the Lense-Thirring Effect
157(8)
L. Iorio
The Use of GP-B Data
157(5)
The Static and Time-Varying Part of the Earth Gravitational Field
158(4)
On the (Im)possibility of Using a Polar Lares
162(1)
Conclusions
162(3)
Error Budget for the Gravitomagnetic Clock Effect
165(12)
L. lorio
H. Lichtenegger
Introduction
165(1)
The Impact of the Orbital Injection Errors
166(9)
The Imperfect Cancellation of the Keplerian Periods
167(1)
The Imperfect Cancellation of the Post-Newtonian Periods
168(1)
The Impact of the Classical Gravitational Perturbations
169(4)
The Impact of the Errors in the Inclinations
173(1)
The N-Body Gravitational Perturbations
174(1)
The Impact of the Non-Gravitational Perturbations
175(1)
Conclusions
175(2)
Is it Possible to Measure the Lense-Thirring Effect in the Gravitational Fields of the Sun and of Mars?
177(12)
L. Iorio
The Solar Gravitomagnetic Field
178(5)
Compatibility of the Estimated Extra-Precessions of Planetary Perihelia with the Lense-Thirring Effect
178(4)
Analysis of Other Independent Data
182(1)
Testing Gravitomagnetism with Mars Global Surveyor in the Field of Mars
183(3)
Discussion and Conclusions
186(3)
On the Detectability of the Earth's Gravitomagnetic Field in Laboratory Experiments
189(12)
L. Iorio
Introduction
189(2)
Proposed Earth Based Laboratory Experiments
191(9)
A Foucault Pendulum at South Pole
191(2)
A Magnetic-Gravitomagnetic Experiment
193(1)
A Michelson-Moreley-Type Experiment
194(2)
The Use of Ring Laser Gyroscopes
196(1)
A Terrestrial Version of the Gravitomagnetic Clock Effect
197(3)
Discussion and Conclusions
200(1)
Atom Interferometry and Gravitomagnetism
201(36)
C. Lammerzahl
Introduction
201(2)
The Sagnac Effect
203(10)
The Sagnac Effect for Light
203(5)
The Operational Definition of Rotation
208(2)
The Sagnac Effect for Matter Waves
210(3)
Basics About Atomic Interferometry
213(11)
The Non-Relativistic Hamiltonian for Atoms
213(4)
The Hamiltonian for the Energy Levels
217(1)
The Center-of-Mass Hamiltonian
217(2)
The Dipole Interaction
219(1)
Two-Level-System
220(2)
The Beam Splitting
222(1)
The Observed Interference Pattern
223(1)
The Phase Shift for Gravito-Inertial Effects
224(13)
Coupling to Acceleration
224(7)
The Sagnac-Effect
231(1)
The Space Project Hyper
232(2)
Comparison with Other Methods
234(3)
A. The Inclination Functions
237(2)
L. Iorio
B. The Classical Orbital Precessions
239(8)
L. Iorio
The Node Coefficients
240(1)
The Pericenter Coefficients
241(6)
C. Web Resources
247(2)
L. Iorio
References 249(22)
Index 271