Preface |
|
xiii | |
Biography |
|
xvi | |
|
|
1 | (54) |
|
1.1 Nanoparticle-Reinforced Composites |
|
|
2 | (1) |
|
1.2 Nanoplatelet-Reinforced Composites |
|
|
3 | (1) |
|
1.3 Nanofiber-Reinforced Composites |
|
|
3 | (1) |
|
1.4 Carbon Nanotube-Reinforced Composites |
|
|
4 | (1) |
|
|
5 | (21) |
|
|
8 | (4) |
|
|
12 | (3) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
1.5.5.1 Fabrication of C Fiber Using PAN |
|
|
17 | (2) |
|
1.5.5.2 Fabrication of C Fiber Using Pitch |
|
|
19 | (1) |
|
|
20 | (2) |
|
1.5.7 Aramid (Kevlar) Fiber |
|
|
22 | (2) |
|
|
24 | (1) |
|
1.5.8.1 Polymer Matrix Composite |
|
|
24 | (1) |
|
1.5.8.2 Metal Matrix Composites |
|
|
25 | (1) |
|
1.5.8.3 Ceramic Matrix Composites |
|
|
25 | (1) |
|
1.6 Manufacturing Methods |
|
|
26 | (29) |
|
1.6.1 Polymer Matrix Composites |
|
|
26 | (1) |
|
1.6.1.1 Thermoset Matrix Composites |
|
|
26 | (10) |
|
1.6.1.2 Thermoplastic Matrix Composites |
|
|
36 | (2) |
|
1.6.2 Metal-Matrix Composites |
|
|
38 | (1) |
|
1.6.2.1 Liquid-State Processes |
|
|
38 | (5) |
|
1.6.2.2 Solid-State Processes |
|
|
43 | (4) |
|
1.6.2.3 In Situ Processes |
|
|
47 | (1) |
|
1.6.3 Ceramic Matrix Composites |
|
|
47 | (1) |
|
1.6.3.1 Cold Pressing and Sintering |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
1.6.3.5 Polymer Infiltration and Pyrolysis |
|
|
51 | (3) |
|
|
54 | (1) |
|
2 Literature Review Of Different Modeling Methods |
|
|
55 | (28) |
|
|
55 | (1) |
|
2.2 Nanostructured Materials |
|
|
56 | (2) |
|
|
58 | (6) |
|
2.3.1 Atomistic, Molecular Methods |
|
|
59 | (1) |
|
2.3.2 Coarse Grain Methods |
|
|
60 | (2) |
|
|
62 | (1) |
|
2.3.4 Effective Continuum Approach |
|
|
63 | (1) |
|
2.4 Literature Review of Different Methods of Modeling |
|
|
64 | (12) |
|
|
64 | (8) |
|
2.4.2 Effective Continuum |
|
|
72 | (1) |
|
|
73 | (3) |
|
|
76 | (7) |
|
|
77 | (6) |
|
3 Modeling Of Nanocomposites |
|
|
83 | (72) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (57) |
|
3.3.1 Cox Shear Lag Model |
|
|
87 | (4) |
|
3.3.2 Eshelby's Equivalent Inclusion |
|
|
91 | (2) |
|
3.3.3 Dilute Eshelby's Model |
|
|
93 | (1) |
|
|
94 | (4) |
|
|
98 | (1) |
|
3.3.6 Modified Halpin--Tsai or Finegan model |
|
|
99 | (5) |
|
3.3.7 Hashin--Shtrikman Model |
|
|
104 | (2) |
|
|
106 | (1) |
|
3.3.9 Self-Consistent Model |
|
|
106 | (2) |
|
3.3.10 Finite Element Modeling (FEM) |
|
|
108 | (1) |
|
|
108 | (1) |
|
3.3.10.2 Representative Volume Elements (RVEs) |
|
|
109 | (3) |
|
3.3.10.3 Modeling for E11 |
|
|
112 | (5) |
|
3.3.10.4 Modeling for E22 |
|
|
117 | (6) |
|
3.3.10.5 Modeling for G23 |
|
|
123 | (4) |
|
3.3.10.6 Modeling for G31 |
|
|
127 | (5) |
|
3.3.10.7 Theoritical Formulation |
|
|
132 | (1) |
|
3.3.10.8 Comparison of Results |
|
|
132 | (11) |
|
3.4 Fast Fourier Transform Numerical Homogenization Methods |
|
|
143 | (6) |
|
3.4.1 FFT-based Homogenization Method |
|
|
145 | (3) |
|
3.4.2 Implementation of FFT-based Homogenization Method |
|
|
148 | (1) |
|
|
149 | (6) |
|
|
150 | (5) |
|
4 Prediction Of Mechanical Properties |
|
|
155 | (36) |
|
|
155 | (15) |
|
4.1.1 Longitudinal Storage Modulus (E'11) |
|
|
155 | (1) |
|
4.1.1.1 Variation of E'11 with Vf |
|
|
155 | (2) |
|
4.1.1.2 Variation of E'11 with l/d |
|
|
157 | (2) |
|
4.1.2 Transverse Storage Modulus (E'22) |
|
|
159 | (1) |
|
4.1.2.1 Variation of E'22 with Vf |
|
|
159 | (2) |
|
4.1.2.2 Variation of E'22 with l/d |
|
|
161 | (2) |
|
4.1.3 Transverse Shear Storage Modulus (G'23) |
|
|
163 | (1) |
|
4.1.3.1 Variation of G'23 with Vf |
|
|
163 | (1) |
|
4.1.3.2 Variation of G'23 with l/d |
|
|
164 | (2) |
|
4.1.4 Longitudinal Shear Storage Modulus (G'12) |
|
|
166 | (1) |
|
4.1.4.1 Variation of G'12 with Vf |
|
|
166 | (2) |
|
4.1.4.2 Variation of G'12 with l/d |
|
|
168 | (2) |
|
|
170 | (17) |
|
4.2.1 Longitudinal Loss Factor (η11) |
|
|
171 | (1) |
|
4.2.1.1 Variation of η11 with Vf |
|
|
171 | (1) |
|
4.2.1.2 Variation of η11 with l/d |
|
|
172 | (2) |
|
4.2.2 Transverse Loss Factor (η22) |
|
|
174 | (1) |
|
4.2.2.1 Variation of η22 with Vf |
|
|
174 | (1) |
|
4.2.2.2 Variation of η22 with l/d |
|
|
175 | (3) |
|
4.2.3 Transverse Shear Loss Factor (η23) |
|
|
178 | (1) |
|
4.2.3.1 Variation of η23 with Vf |
|
|
178 | (3) |
|
4.2.3.2 Variation of η23 with l/d |
|
|
181 | (2) |
|
4.2.4 Longitudinal Shear Loss Factor (η12) |
|
|
183 | (1) |
|
4.2.4.1 Variation of η12 with Vf |
|
|
183 | (1) |
|
4.2.4.2 Variation of η12 with l/d |
|
|
184 | (3) |
|
|
187 | (4) |
|
|
189 | (2) |
|
|
191 | (14) |
|
|
191 | (1) |
|
5.2 Principles of DMA -- Forced Nonresonance Technique |
|
|
192 | (3) |
|
5.2.1 Terms and Definitions |
|
|
192 | (1) |
|
5.2.2 Choice of Sample Geometry |
|
|
193 | (2) |
|
5.2.3 Geometry Choice Guidelines |
|
|
195 | (1) |
|
5.3 Experimental Procedure for Dual Cantilever Mode |
|
|
195 | (2) |
|
5.4 Theoretical Formulations/Modeling |
|
|
197 | (1) |
|
5.5 Results and Discussion |
|
|
198 | (4) |
|
|
202 | (3) |
|
|
203 | (2) |
|
6 Molecular Dynamics Simulation |
|
|
205 | (34) |
|
|
205 | (1) |
|
6.2 Monte Carlo Simulation |
|
|
206 | (1) |
|
|
207 | (1) |
|
6.4 Dissipative Particle Dynamics |
|
|
207 | (1) |
|
6.5 Lattice Boltzmann Method |
|
|
208 | (1) |
|
|
208 | (17) |
|
|
208 | (6) |
|
|
214 | (2) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
|
6.6.2.4 Lennard--Jones Potential |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
6.6.4.1 Andersen's Method |
|
|
221 | (1) |
|
6.6.4.2 Berendsen Thermostat |
|
|
221 | (1) |
|
6.6.4.3 Nose--Hoover Thermostat |
|
|
222 | (2) |
|
6.6.5 Boundary Conditions |
|
|
224 | (1) |
|
6.6.5.1 Periodic Boundary Condition |
|
|
224 | (1) |
|
6.6.5.2 Lees--Edwards Boundary Condition |
|
|
225 | (1) |
|
6.7 Molecular Dynamics Methodology |
|
|
225 | (10) |
|
|
228 | (1) |
|
6.7.1.1 Spherical Systems |
|
|
228 | (2) |
|
6.7.1.2 Nonspherical Systems |
|
|
230 | (3) |
|
|
233 | (1) |
|
6.7.2.1 Spherical Systems |
|
|
233 | (1) |
|
6.7.2.2 Nonspherical Systems |
|
|
234 | (1) |
|
6.8 Molecular Potential Energy Surface |
|
|
235 | (4) |
|
|
237 | (2) |
|
7 Molecular Dynamics Simulation-Case Studies |
|
|
239 | (40) |
|
7.1 Carbon Nanofiber-Reinforced Polymer Composites |
|
|
239 | (17) |
|
7.1.1 Molecular Modeling of CNF and CNF/PP Composites |
|
|
242 | (1) |
|
|
243 | (1) |
|
7.1.3 Modeling of CNF--PP Composites |
|
|
243 | (4) |
|
7.1.4 Damping in CNF--PP Composites |
|
|
247 | (1) |
|
7.1.5 Results and Discussion |
|
|
248 | (1) |
|
|
248 | (5) |
|
|
253 | (3) |
|
|
256 | (1) |
|
7.2 Silica Nanoparticle/Hydroxyapatite Fiber Reinforced bis-GMA/TEGDMA Composites |
|
|
256 | (23) |
|
7.2.1 Molecular Dynamics Methodology |
|
|
259 | (1) |
|
7.2.1.1 Molecular Models of Unfilled Polymers |
|
|
259 | (1) |
|
7.2.1.2 Molecular Models of Filled Polymer Composites |
|
|
259 | (1) |
|
|
259 | (4) |
|
7.2.2 Results and Discussion |
|
|
263 | (1) |
|
7.2.2.1 Chain Configuration |
|
|
263 | (1) |
|
7.2.2.2 Effect of Hydrogen Bonding |
|
|
263 | (4) |
|
7.2.2.3 Prediction of Mechanical Properties |
|
|
267 | (2) |
|
7.2.2.4 Coefficient of Diffusion |
|
|
269 | (3) |
|
|
272 | (2) |
|
|
274 | (5) |
|
8 Coupling Of Scales-Continuum Mechanics And Molecular Dynamics |
|
|
279 | (20) |
|
|
279 | (1) |
|
8.2 Structural Mechanics Review |
|
|
280 | (2) |
|
8.3 Carbon Nanotubes: Structural Mechanics Approach |
|
|
282 | (3) |
|
8.4 Stiffness Parameters and Force Field Constants: Linkage |
|
|
285 | (1) |
|
8.5 Young's Modulus of Graphene and CNT |
|
|
286 | (6) |
|
8.5.1 Modeling of Polymer Matrix |
|
|
292 | (1) |
|
8.6 Modeling of CNT/Polymer Interface |
|
|
292 | (2) |
|
8.7 Elastic Buckling of CNT/Polymer Composite |
|
|
294 | (2) |
|
|
296 | (3) |
|
|
296 | (3) |
|
9 Conclusions And Future Scope |
|
|
299 | (2) |
Index |
|
301 | |