Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites: From Nanoscale to Continuum Simulations

(Dr B R Ambedkar National Institute of Technology, Jalandhar, India)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 09-Mar-2021
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119653646
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 168,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 09-Mar-2021
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119653646
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This book correlates the properties of polymer-based nanocomposites with mechanical models at different length scales. It discusses the reinforcements with particle and fiber and provides an overview of nanocomposites development, theoretical models andsimulation methods. Foundations of molecular dynamics and continuum mechanics methods are laid and comparison between results of experimental and theoretical works is performed. The book also contains case studies and provides scripting tutorials for enthusiasts to exercise simulations and to develop further."--

Learn to model your own problems for predicting the properties of polymer-based composites

Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites: Nanoscale to Continuum Simulations provides readers with a thorough and up-to-date overview of nano, micro, and continuum approaches for the multiscale modeling of polymer-based composites. Covering nanocomposite development, theoretical models, and common simulation methods, the text includes a variety of case studies and scripting tutorials that enable readers to apply and further develop the supplied simulations.

The book describes the foundations of molecular dynamics and continuum mechanics methods, guides readers through the basic steps required for multiscale modeling of any material, and correlates the results between the experimental and theoretical work performed. Focused primarily on nanocomposites, the methods covered in the book are applicable to various other materials such as carbon nanotubes, polymers, metals, and ceramics. Throughout the book, readers are introduced to key topics of relevance to nanocomposite materials and structures—supported by journal articles that discuss recent developments in modeling techniques and in the prediction of mechanical and thermal properties. This timely, highly practical resource:

  • Explains the molecular dynamics (MD) simulation procedure for nanofiber and nanoparticle reinforced polymer composites
  • Compares results of experimental and theoretical results from mechanical models at different length scales
  • Covers different types of fibers and matrix materials that constitute composite materials, including glass, boron, carbon, and Kevlar
  • Reviews models that predict the stiffness of short-fiber composites, including the self-consistent model for finite-length fibers, bounding models, and the Halpin-Tsai equation
  • Describes various molecular modeling methods such as Monte Carlo, Brownian dynamics, dissipative particle dynamics, and lattice Boltzmann methods
  • Highlights the potential of nanocomposites for defense and space applications

Perfect for materials scientists, materials engineers, polymer scientists, and mechanical engineers, Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites is also a must-have reference for computer simulation scientists seeking to improve their understanding of reinforced polymer nanocomposites.

Preface xiii
Biography xvi
1 Introduction
1(54)
1.1 Nanoparticle-Reinforced Composites
2(1)
1.2 Nanoplatelet-Reinforced Composites
3(1)
1.3 Nanofiber-Reinforced Composites
3(1)
1.4 Carbon Nanotube-Reinforced Composites
4(1)
1.5 Nanomaterials
5(21)
1.5.1 Woven Fabric
8(4)
1.5.2 Fibers
12(3)
1.5.3 Types of Fibers
15(1)
1.5.4 Boron Fiber
16(1)
1.5.5 Carbon Fiber
17(1)
1.5.5.1 Fabrication of C Fiber Using PAN
17(2)
1.5.5.2 Fabrication of C Fiber Using Pitch
19(1)
1.5.6 Glass Fiber
20(2)
1.5.7 Aramid (Kevlar) Fiber
22(2)
1.5.8 Matrices
24(1)
1.5.8.1 Polymer Matrix Composite
24(1)
1.5.8.2 Metal Matrix Composites
25(1)
1.5.8.3 Ceramic Matrix Composites
25(1)
1.6 Manufacturing Methods
26(29)
1.6.1 Polymer Matrix Composites
26(1)
1.6.1.1 Thermoset Matrix Composites
26(10)
1.6.1.2 Thermoplastic Matrix Composites
36(2)
1.6.2 Metal-Matrix Composites
38(1)
1.6.2.1 Liquid-State Processes
38(5)
1.6.2.2 Solid-State Processes
43(4)
1.6.2.3 In Situ Processes
47(1)
1.6.3 Ceramic Matrix Composites
47(1)
1.6.3.1 Cold Pressing and Sintering
47(1)
1.6.3.2 Hot Pressing
48(1)
1.6.3.3 Reaction Bonding
49(1)
1.6.3.4 Infiltration
50(1)
1.6.3.5 Polymer Infiltration and Pyrolysis
51(3)
References
54(1)
2 Literature Review Of Different Modeling Methods
55(28)
2.1 Material Development
55(1)
2.2 Nanostructured Materials
56(2)
2.3 Methods of Modeling
58(6)
2.3.1 Atomistic, Molecular Methods
59(1)
2.3.2 Coarse Grain Methods
60(2)
2.3.3 Continuum Methods
62(1)
2.3.4 Effective Continuum Approach
63(1)
2.4 Literature Review of Different Methods of Modeling
64(12)
2.4.1 Micromechanics/FEM
64(8)
2.4.2 Effective Continuum
72(1)
2.4.3 Molecular Dynamics
73(3)
2.5 Conclusion
76(7)
References
77(6)
3 Modeling Of Nanocomposites
83(72)
3.1 Notation
84(1)
3.2 Average Properties
85(1)
3.3 Theoretical Models
86(57)
3.3.1 Cox Shear Lag Model
87(4)
3.3.2 Eshelby's Equivalent Inclusion
91(2)
3.3.3 Dilute Eshelby's Model
93(1)
3.3.4 Mori--Tanaka Model
94(4)
3.3.5 Chow Model
98(1)
3.3.6 Modified Halpin--Tsai or Finegan model
99(5)
3.3.7 Hashin--Shtrikman Model
104(2)
3.3.8 Lielens Model
106(1)
3.3.9 Self-Consistent Model
106(2)
3.3.10 Finite Element Modeling (FEM)
108(1)
3.3.10.1 Introduction
108(1)
3.3.10.2 Representative Volume Elements (RVEs)
109(3)
3.3.10.3 Modeling for E11
112(5)
3.3.10.4 Modeling for E22
117(6)
3.3.10.5 Modeling for G23
123(4)
3.3.10.6 Modeling for G31
127(5)
3.3.10.7 Theoritical Formulation
132(1)
3.3.10.8 Comparison of Results
132(11)
3.4 Fast Fourier Transform Numerical Homogenization Methods
143(6)
3.4.1 FFT-based Homogenization Method
145(3)
3.4.2 Implementation of FFT-based Homogenization Method
148(1)
3.5 Conclusion
149(6)
References
150(5)
4 Prediction Of Mechanical Properties
155(36)
4.1 Storage Moduli
155(15)
4.1.1 Longitudinal Storage Modulus (E'11)
155(1)
4.1.1.1 Variation of E'11 with Vf
155(2)
4.1.1.2 Variation of E'11 with l/d
157(2)
4.1.2 Transverse Storage Modulus (E'22)
159(1)
4.1.2.1 Variation of E'22 with Vf
159(2)
4.1.2.2 Variation of E'22 with l/d
161(2)
4.1.3 Transverse Shear Storage Modulus (G'23)
163(1)
4.1.3.1 Variation of G'23 with Vf
163(1)
4.1.3.2 Variation of G'23 with l/d
164(2)
4.1.4 Longitudinal Shear Storage Modulus (G'12)
166(1)
4.1.4.1 Variation of G'12 with Vf
166(2)
4.1.4.2 Variation of G'12 with l/d
168(2)
4.2 Loss Factors
170(17)
4.2.1 Longitudinal Loss Factor (η11)
171(1)
4.2.1.1 Variation of η11 with Vf
171(1)
4.2.1.2 Variation of η11 with l/d
172(2)
4.2.2 Transverse Loss Factor (η22)
174(1)
4.2.2.1 Variation of η22 with Vf
174(1)
4.2.2.2 Variation of η22 with l/d
175(3)
4.2.3 Transverse Shear Loss Factor (η23)
178(1)
4.2.3.1 Variation of η23 with Vf
178(3)
4.2.3.2 Variation of η23 with l/d
181(2)
4.2.4 Longitudinal Shear Loss Factor (η12)
183(1)
4.2.4.1 Variation of η12 with Vf
183(1)
4.2.4.2 Variation of η12 with l/d
184(3)
4.3 Conclusions
187(4)
Reference
189(2)
5 Experimental Work
191(14)
5.1 Materials
191(1)
5.2 Principles of DMA -- Forced Nonresonance Technique
192(3)
5.2.1 Terms and Definitions
192(1)
5.2.2 Choice of Sample Geometry
193(2)
5.2.3 Geometry Choice Guidelines
195(1)
5.3 Experimental Procedure for Dual Cantilever Mode
195(2)
5.4 Theoretical Formulations/Modeling
197(1)
5.5 Results and Discussion
198(4)
5.6 Conclusions
202(3)
References
203(2)
6 Molecular Dynamics Simulation
205(34)
6.1 Molecular Dynamics
205(1)
6.2 Monte Carlo Simulation
206(1)
6.3 Brownian Dynamics
207(1)
6.4 Dissipative Particle Dynamics
207(1)
6.5 Lattice Boltzmann Method
208(1)
6.6 Basic Concepts
208(17)
6.6.1 Force Field
208(6)
6.6.2 Potentials
214(2)
6.6.2.1 Tersoff Model
216(1)
6.6.2.2 Brenner Model
216(1)
6.6.2.3 Morse Potential
217(1)
6.6.2.4 Lennard--Jones Potential
218(1)
6.6.3 Ensemble
219(1)
6.6.4 Thermostat
220(1)
6.6.4.1 Andersen's Method
221(1)
6.6.4.2 Berendsen Thermostat
221(1)
6.6.4.3 Nose--Hoover Thermostat
222(2)
6.6.5 Boundary Conditions
224(1)
6.6.5.1 Periodic Boundary Condition
224(1)
6.6.5.2 Lees--Edwards Boundary Condition
225(1)
6.7 Molecular Dynamics Methodology
225(10)
6.7.1 Initial Positions
228(1)
6.7.1.1 Spherical Systems
228(2)
6.7.1.2 Nonspherical Systems
230(3)
6.7.2 Initial Velocities
233(1)
6.7.2.1 Spherical Systems
233(1)
6.7.2.2 Nonspherical Systems
234(1)
6.8 Molecular Potential Energy Surface
235(4)
References
237(2)
7 Molecular Dynamics Simulation-Case Studies
239(40)
7.1 Carbon Nanofiber-Reinforced Polymer Composites
239(17)
7.1.1 Molecular Modeling of CNF and CNF/PP Composites
242(1)
7.1.2 Modeling of CNFs
243(1)
7.1.3 Modeling of CNF--PP Composites
243(4)
7.1.4 Damping in CNF--PP Composites
247(1)
7.1.5 Results and Discussion
248(1)
7.1.5.1 Elastic Moduli
248(5)
7.1.5.2 Damping
253(3)
7.1.6 Conclusions
256(1)
7.2 Silica Nanoparticle/Hydroxyapatite Fiber Reinforced bis-GMA/TEGDMA Composites
256(23)
7.2.1 Molecular Dynamics Methodology
259(1)
7.2.1.1 Molecular Models of Unfilled Polymers
259(1)
7.2.1.2 Molecular Models of Filled Polymer Composites
259(1)
7.2.1.3 MD Methodology
259(4)
7.2.2 Results and Discussion
263(1)
7.2.2.1 Chain Configuration
263(1)
7.2.2.2 Effect of Hydrogen Bonding
263(4)
7.2.2.3 Prediction of Mechanical Properties
267(2)
7.2.2.4 Coefficient of Diffusion
269(3)
7.2.3 Conclusion
272(2)
References
274(5)
8 Coupling Of Scales-Continuum Mechanics And Molecular Dynamics
279(20)
8.1 Introduction
279(1)
8.2 Structural Mechanics Review
280(2)
8.3 Carbon Nanotubes: Structural Mechanics Approach
282(3)
8.4 Stiffness Parameters and Force Field Constants: Linkage
285(1)
8.5 Young's Modulus of Graphene and CNT
286(6)
8.5.1 Modeling of Polymer Matrix
292(1)
8.6 Modeling of CNT/Polymer Interface
292(2)
8.7 Elastic Buckling of CNT/Polymer Composite
294(2)
8.8 Conclusions
296(3)
References
296(3)
9 Conclusions And Future Scope
299(2)
Index 301
SUMIT SHARMA is Assistant Professor at Dr B R Ambedkar National Institute of Technology in Jalandhar, India. He has published thirty scholarly articles and a book related to simulations of composite materials. His research interests include viscoelasticity, fracture mechanics, phase transformations, and solid mechanics.