Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mechanics, Waves and Thermodynamics: An Example-based Approach

  • Formāts: PDF+DRM
  • Sērija : Cambridge IISc Series
  • Izdošanas datums: 09-May-2016
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316758779
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 63,04 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Cambridge IISc Series
  • Izdošanas datums: 09-May-2016
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316758779
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The principles of classical physics, though superseded in specific fields by such theories as quantum mechanics and general relativity, are still of great importance in a broad range of applications. The book presents fundamental concepts of classical physics in a coherent and logical manner. It discusses important topics including the mechanics of a single particle, kinetic theory, oscillations and waves. Topics including the kinetic theory of gases, thermodynamics and statistical mechanics are discussed, which are normally not present in the books on classical physics. The fundamental concepts of energy, momentum, mass and entropy are explained with examples. Discussion on concepts of thermodynamics is presented along with the simplified explanation on Caratheodory's axioms. It covers chapters on wave motion and statistical physics, useful for the graduate students. Each concept is supported with real-life applications on several concepts including impulse and collision, Bernoulli's equation, and friction.

Papildus informācija

The book covers concepts of mechanics, waves and thermodynamics with the help of examples. The text is useful for undergraduate students.
Figures xiii
Preface xvii
Acknowledgments xix
1 Energy, Mass, Momentum 1(9)
1.1 Energy
1(3)
1.1.1 Car driving
3(1)
1.2 Mass
4(3)
1.3 Momentum
7(3)
2 Kinematics, Newton's Laws of Motion 10(13)
2.1 Whether to Stop or Run Through?
10(3)
2.2 Vertical Jump
13(3)
2.2.1 Height equation: from conservation law
14(1)
2.2.2 Jumps of animals
15(1)
2.3 Hourglass
16(1)
2.4 Motion of a Chain in a Tube
17(2)
2.5 Forces
19(4)
2.5.1 Gravitation
19(2)
2.5.2 Electro-weak interaction
21(1)
2.5.3 Strong interaction
21(2)
3 Circular Motion 23(6)
3.1 Cartesian vs Polar Coordinates
23(4)
3.2 Coriolis Force
27(1)
3.3 Rotation Group
28(1)
4 The Principle of Least Action 29(7)
4.1 Action of the Principle
29(3)
4.1.1 Mechanics
29(1)
4.1.2 Electric circuits
30(1)
4.1.3 Optics
31(1)
4.2 The Principle of Least Action
32(2)
4.3 More Thoughts on Why "(T — V)"?
34(2)
5 Work and Energy 36(12)
5.1 At the T-junction
36(3)
5.2 Motion of a Heavy Particle on a Smooth Curve in a Vertical Plane
39(1)
5.3 Motion of a Heavy Particle, Placed on the Outside of a Smooth Circle in a Vertical Plane and Allowed to Slide Down
40(1)
5.4 Motion in a Vertical Plane of a Heavy Particle Attached by a Fine String to a Fixed Point
41(1)
5.5 Conservative Force
42(2)
5.5.1 Interpretation of grad V
43(1)
5.5.2 Relation with curl of the force
44(1)
5.6 Work-energy Theorem and Galilean Invariance
44(4)
5.6.1 Galilean invariant
44(2)
5.6.2 Example
46(2)
6 Mechanics of a System of Particles 48(22)
6.1 Analysing the Leaky Pendulum
49(4)
6.1.1 Simple 'usual' pendulum
49(1)
6.1.2 Leaking bob
50(3)
6.2 Work-energy Theorem Revisited
53(2)
6.3 Displacement
55(1)
6.4 Rotation
56(1)
6.5 Rigid Body Motion: Basic Ideas
57(3)
6.6 Rotation of a Rigid Body about an Arbitrary Axis
60(2)
6.6.1 Special cases
61(1)
6.7 Moments of Inertia of Simple Bodies
62(2)
6.8 Principal Axes — Stationary Points of Kinetic Energy
64(2)
6.9 Euler's Equations
66(4)
7 Friction 70(8)
7.1 Non-conservative Forces and Energy Loss
70(2)
7.1.1 Energy loss
71(1)
7.2 Bowling — Physics of the Rolling Ball
72(5)
7.3 Squealing and Squeaking
77(1)
8 Impulse and Collisions 78(13)
8.1 Impact of Smooth Spheres
78(4)
8.1.1 Direct impact
78(1)
8.1.2 Poisson's hypothesis
79(1)
8.1.3 Kinetic energy lost by impact
80(1)
8.1.4 Generalization of Newton's rule
81(1)
8.2 Forward Karate Punch
82(4)
8.2.1 Deformation energy
82(1)
8.2.2 Impact force
83(3)
8.3 Falling Pencil on a Table
86(5)
9 Central Forces 91(13)
9.1 The Two-body Problem
91(5)
9.1.1 Bounded orbits
94(2)
9.2 Two Bodies Under their Own Gravitational Interaction
96(2)
9.2.1 Case I
96(1)
9.2.2 Case II
97(1)
9.2.3 Case III
98(1)
9.3 Satellite Paradox
98(3)
9.3.1 Descending path on a near-circular orbit
99(2)
9.4 Rotation Curves: an Anomaly
101(1)
9.5 The Rosetta-Philae Comet Mission
102(2)
10 Dimensional Analysis 104(4)
10.1 Black Holes at LHC
104(1)
10.2 Nuclear Explosion
105(1)
10.3 Insect Flight
106(2)
11 Oscillations 108(17)
11.1 Free Oscillations
108(1)
11.2 Transverse Oscillations in Mass-spring System
109(1)
11.3 Compound Pendulum
109(1)
11.4 Damped Harmonic Oscillator
110(1)
11.5 Driven Damped Simple Harmonic Oscillator
111(3)
11.6 Beats
114(1)
11.7 Another Instance of Simple Harmonic Motion
114(2)
11.8 Two Coupled Oscillators
116(3)
11.9 Three Coupled Oscillators
119(1)
11.10 Many Coupled Oscillators
120(2)
11.10.1 Phase velocity
122(1)
11.10.2 Three-dimensional long-range order
122(1)
11.11 Dissipation by a Rapidly Oscillating Potential
122(3)
12 Waves 125(11)
12.1 Transverse Modes of a String
125(2)
12.2 Standing Waves in One Dimension
127(1)
12.2.1 Reflection and transmission of waves on a string
127(1)
12.3 Standing Waves on Planar Membranes
128(3)
12.4 Speed of Sound in Air
131(5)
12.4.1 Newton's derivation
131(2)
12.4.2 Correct derivation (Laplace)
133(3)
13 Sound of Music 136(6)
13.1 Physics of Music
136(3)
13.2 Western Classical Music
139(1)
13.3 Transposition, Musical Scales, and Algebraic Groups
140(2)
14 Fluid Mechanics 142(11)
14.1 Equation of Continuity
144(1)
14.2 Euler's Equation
144(2)
14.2.1 Applications
145(1)
14.3 Bernoulli's Equation
146(1)
14.4 Streamlines
146(1)
14.4.1 Applications
147(1)
14.5 Speed of Sound Inside a Fluid
147(3)
14.5.1 Effect of bubbles
148(2)
14.6 Sound of a Brook
150(1)
14.7 Why is Water Watery?
151(2)
15 Water Waves 153(6)
15.1 Gravity Waves in Liquid
153(3)
15.1.1 Deep water waves
155(1)
15.1.2 Shallow water waves (Tsunami)
155(1)
15.2 Capillary Waves
156(3)
16 The Kinetic Theory of Gases 159(9)
16.1 Equipartition of Kinetic Energy, Ideal Gas Law
160(2)
16.2 Football Game: Kinetic Theory Perspective
162(2)
16.3 Adiabatic Reversible Compression
164(1)
16.4 Adiabatic Reversible Compression (from Mechanics and Kinetic Theory)
165(2)
16.5 Maxwellian Distribution of Velocities of Gas Molecules
167(1)
17 Concepts and Laws of Thermodynamics 168(13)
17.1 Adiabatic Transitions and Accessibility of States of a System - Empirical Entropy, First and Second Laws
169(1)
17.2 Sears' Illustration of Caratheodory's Treatment
170(4)
17.2.1 Temperature as a property
174(1)
17.3 Reversible and Irreversible Adiabatic Processes
174(2)
17.3.1 Reversible process
174(1)
17.3.2 Carnot cycle
175(1)
17.3.3 Irreversibility
175(1)
17.4 Order or Disorder
176(1)
17.5 How Does Entropy Look Like?
177(4)
18 Some Applications of Thermodynamics 181(13)
18.1 Thermodynamic Potentials
181(3)
18.2 Van der Waals Equation for Real Gases
184(2)
18.2.1 Liquefaction of gases
185(1)
18.3 The Third Law of Thermodynamics
186(1)
18.4 Gaseous Mixture
187(3)
18.4.1 Diffusion
187(2)
18.4.2 Law of mass action
189(1)
18.5 Chemical Potential
190(2)
18.6 Van't Hoff Equation of State for Dilute Solutions
192(2)
19 Basic Ideas of Statistical Mechanics 194(9)
19.1 Gibbs and Boltzmann Entropies
194(3)
19.1.1 Entropy and "energy-spreading"
197(1)
19.2 Boltzmann Factor: Application to "Phases of Matter"
197(4)
19.2.1 Gases and solids
198(2)
19.2.2 Liquids
200(1)
19.3 Failure of Classical Physics
201(2)
Bibliography 203(6)
Index 209
Sudhir R. Jain is Scientific Officer, Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai. He was a visiting researcher at the Universitč Libre de Bruxelles, Belgium (19956), Universiteit Utrecht, The Netherlands (2006) and the Institute for Physical Science and Technology, University of Maryland (2005). He received his PhD from the University of Mumbai while working at the Theoretical Physics Division of Bhabha Atomic Research Centre. He has published a number of articles in national and international journals. His areas of interest are nonlinear dynamics and quantum chaos, statistical physics, nuclear theory, and mathematical physics.