Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mechanism of Functional Expression of the Molecular Machines

  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This brief discusses the mechanism of functional expression of a protein or protein complex utilizing the ATP hydrolysis cycle or proton-motive force from a unique point of view focused on the roles of water. A variety of processes are considered such as the unidirectional movement of a linear-motor protein along a filament, insertion of an unfolded protein into a chaperonin and release of the folded protein from it, transport of diverse substrates across the membrane by a transporter, and directed rotation of the central subunit within a rotatory motor protein complex. These topics are discussed in a unified manner within the same theoretical framework. The author argues that water plays imperative roles in the functional expression of these molecular machines. A pivotal factor is the entropic force or potential originating from the translational displacement of water molecules coexisting with the molecular machines in the entire system.
1 Introduction
1(4)
References
3(2)
2 Importance or Translational, Configurational Entropy of Water
5(16)
2.1 Biological Self-assembly Processes
5(1)
2.2 Biological Ordering Processes
6(1)
2.3 Entropic Excluded-Volume Effect
6(2)
2.4 Basic Concept of Entropically Driven Self-assembly Processes
8(1)
2.5 Integral Equation Theory
9(1)
2.6 Morphometric Approach for a Complexly Shaped Solute
10(1)
2.7 Solvent Crowding
11(1)
2.8 Protein Folding
12(2)
2.9 Pressure and Cold Denaturating of a Protein
14(1)
2.10 Modeling Water as Neutral Hard Spheres with no Soft Interaction Potentials
15(1)
2.11 Roles of Potential of Mean Force in Ordering Processes
16(1)
2.12 Entropic Potential or Force
17(4)
References
19(2)
3 Molecular Machines
21(42)
3.1 Proteins and Protein Complexes Utilizing ATP Hydrolysis Cycle and Proton Motive Force
21(1)
3.2 Unidirectional Movement of Myosin Head (SI) Along F-Actin
22(7)
3.2.1 Summary of Experimental Observations
23(1)
3.2.2 Model and Theory
24(1)
3.2.3 Summary of Theoretical Results
25(1)
3.2.4 Physical Picture of the Unidirectional Movement
26(2)
3.2.5 Is the Prevailing View Correct?
28(1)
3.3 Insertion and Release of a Solute into and from a Biopolymer Complex: Chaperonin GroEL
29(8)
3.3.1 Model and Theory
31(1)
3.3.2 Entropic Insertion of a Solute into a Vessel
32(2)
3.3.3 Release of a Solute from a Vessel: Switch from Insertion to Release
34(1)
3.3.4 Roles of GroES as a Lid
35(1)
3.3.5 Mechanism Through Which a Chaperonin Works
36(1)
3.3.6 Dynamics of Insertion/Release Process
36(1)
3.4 Transport of Diverse Substrates Across Membrane by an ABC Transporter
37(4)
3.4.1 Model and Theory
38(1)
3.4.2 Entropic Release of a Solute from a Vessel
38(2)
3.4.3 Multidrug Efflux
40(1)
3.5 Rotation of Central Subunit Within F1-ATPase
41(7)
3.5.1 Summary of Experimental Observations
43(1)
3.5.2 Model and Theory
44(1)
3.5.3 Nonuniform Packing Efficiency in F1-ATPase
44(2)
3.5.4 Physical Picture of Rotational Mechanism
46(1)
3.5.5 Effect of Direct Interaction Between Subunits
47(1)
3.6 Functional Rotation of AcrB
48(15)
3.6.1 Conformational Change of AcrB During One Cycle
50(2)
3.6.2 Model and Theory
52(2)
3.6.3 Nonuniform Packing Efficiency in AcrB
54(1)
3.6.4 Conformational Reorganization Induced by Proton Binding or Dissociation
54(3)
3.6.5 Physical Picture of Functional-Rotation Mechanism
57(2)
3.6.6 Significance of Trimer Formation
59(1)
3.6.7 Comparison Between AcrB and F1-ATPase
59(1)
References
60(3)
4 Concluding Remarks: Mechanism of Functional Expression Common in the Molecular Machines
63(6)
4.1 Characteristics Common in ATP-Driven Proteins and Protein Complexes
63(1)
4.2 Roles of ATP Hydrolysis Cycle and Proton Motive Force
64(1)
4.3 Self-assembly and Ordering Processes
65(1)
4.4 Rotation of Central Subunit Within F1-ATPase in Opposite Direction
66(1)
4.5 Movement of Myosin Head (S1) Along F-Actin
66(1)
4.6 Changes in Thermodynamic Quantities upon Self-assembly Processes Measured in Experiments
67(1)
4.7 Correct Interpretation of Hydrophobic Effect
68(1)
4.8 Life and Translational, Configurational Entropy of Water
68(1)
References 69
Prof. Dr. Masahiro KinoshitaInstitute of Advanced Energy Kyoto University