Atjaunināt sīkdatņu piekrišanu

E-grāmata: Medical Image Computing and Computer Assisted Intervention - MICCAI 2020: 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part VI

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12266
  • Izdošanas datums: 02-Oct-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030597252
  • Formāts - EPUB+DRM
  • Cena: 142,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12266
  • Izdošanas datums: 02-Oct-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030597252

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic.





The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections:





Part I: machine learning methodologies





Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networks





Part III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysis





Part IV: segmentation; shape models and landmark detection





Part V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmology





Part VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imaging





Part VI: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography
Angiography and Vessel Analysis.- Lightweight Double Attention-fused
Networks for Intraoperative Stent Segmentation.- TopNet: Topology Preserving
Metric Learning for Vessel Tree Reconstruction and Labelling.- Learning
Hybrid Representations for Automatic 3D Vessel Centerline Extraction.-
Branch-aware Double DQN for Centerline Extraction in Coronary CT
Angiography.- Automatic CAD-RADS Scoring from CCTA Scans using Deep
Learning.- Higher-Order Flux with Spherical Harmonics Transform for Vascular
Analysis.- Cerebrovascular Segmentation in MRA via Reverse Edge Attention
Network.- Automated Intracranial Artery Labeling using a Graph Neural Network
and Hierarchical Refinement.- Time matters: Handling spatio-temporal
perfusion information for automated TICI scoring.- ID-Fit: Intra-saccular
Device adjustment for personalized cerebral aneurysm treatment.-
JointVesselNet: Joint Volume-Projection Convolutional Embedding Networks for
3D Cerebrovascular Segmentation.- Classification of Retinal Vessels into
Artery-Vein in OCT Angiography Guided by Fundus Images.- Vascular surface
segmentation for intracranial aneurysm isolation and quantification.- Breast
Imaging.- Deep Doubly Supervised Transfer Network for Diagnosis of Breast
Cancer with Imbalanced Ultrasound Imaging Modalities.- 2D X-ray mammography
and 3D breast MRI registration.- A Second-order Subregion Pooling Network for
Breast Ultrasound Lesion Segmentation.- Multi-Scale Gradational-Order Fusion
Framework for Breast lesions Classification Using Ultrasound images.-
Computer-aided Tumor Diagnosis in Automated Breast Ultrasound using 3D
Detection Network.- Auto-weighting for Breast Cancer Classification in
Multimodal Ultrasound.- MommiNet: Mammographic Multi-View Mass Identification
Networks.- Multi-Site Evaluation of a Study-Level Classifier for Mammography
using Deep Learning.- The case of missed cancers: Applying AI as a
radiologists safety net.- Decoupling Inherent Risk and Early Cancer Signs in
Image-based Breast Cancer Risk Models.- Multi-task learning for detection and
classification of cancer in screening mammography.- Colonoscopy.- Adaptive
Context Selection for Polyp Segmentation.- PraNet: Parallel Reverse Attention
Network for Polyp Segmentation.- Few-Shot Anomaly Detection for Polyp Frames
from Colonoscopy.- PolypSeg: an Efficient Context-aware Network for Polyp
Segmentation from Colonoscopy Videos.- Endoscopic polyp segmentation using a
hybrid 2D/3D CNN.- Dermatology.- A distance-based loss for smooth and
continuous skin layer segmentation in optoacoustic images.- Fairness of
Classifiers Across Skin Tones in Dermatology.- Alleviating the
Incompatibility between Cross Entropy Loss and Episode Training for Few-shot
Skin Disease Classification.- Clinical-Inspired Network for Skin Lesion
Recognition.- Multi-class Skin Lesion Segmentation for Cutaneous T-cell
Lymphomas on High-Resolution Clinical Images.- Fetal Imaging.- Deep learning
automatic fetal structures segmentation in MRI scans with few annotated
datasets.- Data-Driven Multi-Contrast Spectral Microstructure Imaging with
InSpect.- Semi-Supervised Learning for Fetal Brain MRI Quality Assessment
with ROI consistency.- Enhanced detection of fetal pose in 3D MRI by Deep
Reinforcement Learning with physical structure priors on anatomy.- Automatic
angle of progress measurement of intrapartum transperineal ultrasound image
with deep learning.- Joint Image Quality Assessment and Brain Extraction of
Fetal MRI using Deep Learning.- Heart and Lung Imaging.- Accelerated 4D
Respiratory Motion-resolved Cardiac MRI with a Model-based Variational
Network.- Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation.- ICA-UNet: ICA Inspired Statistical UNet for Real-time 3D Cardiac
Cine MRI Segmentation.- A Bottom-up Approach for Real-time Mitral Valve
Annulus Modeling on 3D Echo Images.- A Semi-supervised Joint Network for
Simultaneous Left Ventricular Motion Tracking andSegmentation in 4D
Echocardiography.- Joint data imputation and mechanistic modelling for
simulating heart-brain interactions in incomplete datasets.- Learning
Geometry-Dependent and Physics-Based Inverse Image Reconstruction.-
Hierarchical Classification of Pulmonary Lesions: A Large-Scale
Radio-Pathomics Study.- Learning Tumor Growth via Follow-Up Volume Prediction
for Lung Nodules.- Multi-stream Progressive Up-sampling Network for Dense CT
Image Reconstruction.- Abnormality Detection in Chest X-ray Images Using
Uncertainty Prediction Autoencoders.- Region Proposals for Saliency Map
Refinement for Weakly-supervised Disease Localisation and Classification.-
CPM-Net: A 3D Center-Points Matching Network for Pulmonary Nodule Detection
in CT Scans.- Interpretable Identification of Interstitial Lung Diseases
(ILD) Associated Findings from CT.- Learning with Sure Data for Nodule-Level
Lung Cancer Prediction.- Cascaded Robust Learning at Imperfect Labels for
Chest X-ray Segmentation.- Class-Aware Multi-Window Adversarial Lung Nodule
Synthesis Conditioned on Semantic Features.- Nodule2vec: a 3D Deep Learning
System for Pulmonary Nodule Retrieval Using Semantic Representation.- Deep
Active Learning for Effective Pulmonary Nodule Detection.- Musculoskeletal
Imaging.- Towards Robust Bone Age Assessment: Rethinking Label Noise and
Ambiguity.- Improve bone age assessment by learning from anatomical local
regions.- An Analysis by Synthesis Method that Allows Accurate Spatial
Modeling of Thickness of Cortical Bone from Clinical QCT.- Segmentation of
Paraspinal Muscles at Varied Lumbar Spinal Levels by Explicit Saliency-Aware
Learning.- Manifold Ordinal-Mixup for Ordered Classes inTW3-based Bone Age
Assessment.- Contour-based Bone Axis Detection for X-Ray Guided Surgery on
the Knee.- Automatic Segmentation, Localization, and Identification of
Vertebrae in 3D CT Images Using Cascaded Convolutional Neural Networks.-
Discriminative dictionary-embedded network for comprehensivevertebrae tumor
diagnosis.- Multi-vertebrae segmentation from arbitrary spine MR images under
global view.- A Convolutional Approach to Vertebrae Identification in Whole
Spine MRI.- Keypoints Localization for Joint Vertebra Detection and Fracture
Severity Quantification.- Grading Loss: A Fracture Grade-based Metric Loss
for Vertebral Fracture Detection.- 3D Convolutional Sequence to Sequence
Model for Vertebral Compression Fractures Identification in CT.- SIMBA:
Specific Identity Markers for Bone Age Assessment.- Doctor Imitator: A
Graph-based Bone Age Assessment Framework Using Hand Radiographs.- Inferring
the 3D Standing Spine Posture from 2D Radiographs.- Generative Modelling of
3D in-silico Spongiosa with Controllable Micro-Structural Parameters.-
GAN-based Realistic Bone Ultrasound Image and Label Synthesis for Improved
Segmentation.- Robust Bone Shadow Segmentation from 2D Ultrasound Through
Task Decomposition.