Atjaunināt sīkdatņu piekrišanu

E-grāmata: Medical Optical Imaging and Virtual Microscopy Image Analysis: First International Workshop, MOVI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13578
  • Izdošanas datums: 16-Sep-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031169618
  • Formāts - EPUB+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13578
  • Izdošanas datums: 16-Sep-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031169618

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 1st International Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis, MOVI 2022, held in conjunction with the 25th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2022, in Singapore, Singapore, in September 2022.















The 18 papers presented at MOVI 2022 were carefully reviewed and selected from 25 submissions. The objective of the MOVI workshop is to promote novel scalable and resource-efficient medical image analysis algorithms for high-dimensional image data analy-sis, from optical imaging to virtual microscopy.
Cell counting with inverse distance kernel and self-supervised
learning.- Predicting the visual attention of pathologists evaluating whole
slide images of cancer.- Edge-Based Self-Supervision for Semi-Supervised
Few-Shot Microscopy Image Cell Segmentation.- Joint Denoising and
Super-resolution for Fluorescence Microscopy using Weakly-supervised Deep
Learning.- MxIF Q-score: Biology-informed Quality Assurance for Multiplexed
Immunofluorescence Imaging.- A Pathologist-Informed Workflow for
Classification of Prostate Glands in Histopathology.- Leukocyte
Classification using Multimodal Architecture Enhanced by Knowledge
Distillation.- Deep learning on lossily compressed pathology images: adverse
effects for ImageNet pre-trained models.- Profiling DNA damage in 3D
Histology Samples.- Few-shot segmentation of microscopy images using Gaussian
process.- Adversarial Stain Transfer to Study the Effect of Color Variation
on Cell Instance Segmentation.- Constrained self-supervised method with
temporal ensembling for  fiber bundle detection on anatomic tracing data.-
Sequential multi-task learning for histopathology-based prediction of genetic
mutations with extremely imbalanced labels.- Morph-Net: End-to-End Prediction
of Nuclear Morphological Features from Histology Images.- A Light-weight
Interpretable Model for Nuclei Detection and Weakly-supervised Segmentation.-
A coarse-to-fine segmentation methodology based on deep networks for
automated analysis of Cryptosporidium parasite from fluorescence microscopic
images.- Swin Faster R-CNN for Senescence Detection of Mesenchymal Stem Cells
in Bright-field Images.- Characterizing Continual Learning Scenarios for
Tumor Classification in Histopathology Images.