Atjaunināt sīkdatņu piekrišanu

E-grāmata: Medical Optical Imaging and Virtual Microscopy Image Analysis: Second International Workshop, MOVI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 15371
  • Izdošanas datums: 16-Jan-2025
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031777868
  • Formāts - PDF+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 15371
  • Izdošanas datums: 16-Jan-2025
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031777868

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the Second International Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis, MOVI 2024, held in conjunction with the 26th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco, in October 2024.





The 21 regular papers presented at MOVI 2024 were carefully reviewed and selected from 29 submissions.





They are grouped into these two topical sections: Medical Optical Imaging and Virtual Microscopy Image Analysis and Kidney Pathology Image segmentation (KPIs) Challenge.

Medical Optical Imaging and Virtual Microscopy Image Analysis: A Deployable Microscopic Image Segmentation Look-Up Table Based on A Dilated CNN.- From Feature Maps to Few-Shot Cell Segmentation.- Deep Learning for Classifying Anti-Shigella Opsono-phagocytosis-promoting Monoclonal Antibodies.- Multi-target Stain Normalization for Histology Slides.- Intensity Inhomogeneity Correction for Large Panoramic Electron Microscopy Images.- Fully Automated CTC Detection, Segmentation and Classification for Multi-Channel IF Imaging.- Lymphoid Infiltration Assessment of the Tumor Margins in H&E Slides.- TRP-Net: Transformer with RMM and PPM for High-efficiency Circulating Abnormal Cells Detection in Multichannel Fluorescence Imaging.- Color Flow Imaging Microscopy Improves Identification of Stress Sources of Protein Aggregates in Biopharmaceuticals.- Learned Image Compression for HE-stained Histopathological Images via Stain Deconvolution.- CLSMI2T3: 3D CLSM Vasculature Volume Reconstruction from A Single 2D Slice by Off-Focal Plane Signal Using Synthetic Data.- Retinal IPA: Iterative KeyPoints Alignment for Multimodal Retinal Imaging.- MDSN: Multi-stage Context-Aware Nuclei Detection-Segmentation Network.- Structured Model Pruning for Efficient Inference in Computational Pathology.- Histopathology Image Embedding based on Foundation Models Features Aggregation for DLBCL Patient Treatment Response Prediction.- EM-Compressor: Electron Microscopy Image Compression in Connectomics with Variational Autoencoders. Kidney Pathology Image segmentation (KPIs) Challenge: AC-UNet: A Self-Adaptive Cropping Approach for Kidney Pathology Image Segmentation.- SAM-Glomeruli: Enhanced Segment Anything Model for Precise Glomeruli Segmentation.- A Robust Deep Learning Method for WSI-level Diseased Glomeruli Segmentation.- Ensembled SegNeXt Based Glomeruli Segmentation.- Glomeruli Segmentation in Whole-Slide Images: Is Better Local Performance Always Better.