Atjaunināt sīkdatņu piekrišanu

E-grāmata: Medical Statistics for Cancer Studies

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It provides detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics.



Cancer is a dreaded disease. One in two people will be diagnosed with cancer within their lifetime. Medical Statistics for Cancer Studies shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It gives some background in cancer biology and genetics, followed by detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics. It includes lots of examples using real data from the author’s many years of experience working in a cancer clinical trials unit.

Features:

  • A broad and accessible overview of statistical methods in cancer research
  • Necessary background in cancer biology and genetics
  • Details of statistical methodology with minimal algebra
  • Many examples using real data from cancer clinical trials
    • Appendix giving statistics revision.
  • 1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code.
    2.
    Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA, Genes,
    RNA and Proteins. 2.3. Cancer DNA Gone Wrong. 2.4. Cancer Treatments. 2.5.
    Measuring Cancer in the Patient.
    3. Survival Analysis. 3.1. The Amazing
    Survival Equations. 3.2. Non-parametric Estimation of Survival Curves. 3.3.
    Fitting Parametric Survival Curves to Data. 3.4. Comparing Two Survival
    Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing Two Parametric Survival
    Curves.
    4. Designing and Running a Clinical Trial. 4.1. Types of Trials and
    Studies. 4.2. Clinical Trials.
    5. Regression Analysis for Survival Data. 5.1.
    A Weibull Parametric Regression Model. 5.2. Cox Proportional Hazards Model.
    5.3. Accelerated Failure Time (AFT) Models. 5.4. Proportional Odds Models.
    5.5. Parametric Survival Distributions for PH and AFT Models. 5.6. Flexible
    Parametric Models.
    6. Clinical Trials: The Statisticians Role. 6.1. Sample
    Size Calculation. 6.2. Examples of Sample Size Calculations; Phases I to III.
    6.3. Group Sequential Designs. 6.4. More Statistical Tasks for Clinical
    Trials.
    7. Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics
    for Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
    Cross-sectional Studies. 7.6. Spatial Epidemiology.
    8. Meta-Analysis. 8.1.
    How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
    Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis. 8.6.
    Individual Patient Data.
    9. Cancer Biomarkers. 9.1. Diagnostic Biomarkers.
    9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for Pancreatic Cancer.
    9.4. Biomarker Trial Design.
    10. Cancer Informatics. 10.1. Producing Genetic
    Data. 10.2. Analysis of Microarray Data. 10.3. Pre-processing NGS Data. 10.4.
    TCGA-KIRC: Renal Clear Cell Carcinoma.
    Trevor F. Cox is retired from Liverpool Cancer Trials Unit, University of Liverpool, UK