Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mediterranean Land-surface Processes Assessed from Space

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Regional Climate Studies
  • Izdošanas datums: 13-Feb-2007
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540453109
  • Formāts - PDF+DRM
  • Cena: 213,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Regional Climate Studies
  • Izdošanas datums: 13-Feb-2007
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540453109

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

1. 1 Space View and Ground Observations 1 1. 2 Mediterranean Climatic Environment 2 1. 3 Processes at Surfaces 10 1. 3. 1 Deforestation and Land-use Changes 10 1. 3. 2 Water Related Problems 16 1. 3. 3 Fire, Grazing, and Land Degradation 19 1. 3. 4 Drought, Floods, Frost, and Desertification 21 1. 3. 5 Coupling Between Surface and Atmosphere: The Role of the Atmospheric Boundary Layer 25 1. 4 Role and Capabilities of Measurements Made From Space 30 1. 4. 1 Research Programmes 30 1. 4. 2 Expected Information 32 1. 4. 3 Research Strategy 33 1. 4. 4 Observation of Changes in Heterogeneous Landscapes: Spatial and Temporal Scales 35 1. 4. 5 Land-surface Change Indicators Observable from Space 36 Spectral Characteristics of Vegetation and Soils (36); Responses of Remote Sensing Signals to Changes of Land-surface Properties (40) 1. 5 About this Book 48 Chapter 2 Processing and Archiving of Satellite and Ancillary Data 51 2. 1 Introduction 51 2. 2 The Remote Sensing Data Base 55 2. 2. 1 Satellite Instruments 55 The NOAA Observing System (55); Meteosat (57); Nimbus-7 (59); Landsat (59); SPOT (61); DMSP (62); ERS-1 and ERS-2 (62); TRMM (63); Terra (64); Envisat (65); Aqua (66) 2. 2. 2 Aircraft Instruments 66 The Use of Aircraft for Land-surface Process Studies (66); AVIRIS (67); TMS (68); AIRSAR (68); DIAL (69) 2. 3 Reception, Acquisition and Availability of Satellite Data 70 2. 3.
Chapter 1 Introduction 1(50)
1.1 Space View and Ground Observations
1(1)
1.2 Mediterranean Climatic Environment
2(8)
1.3 Processes at Surfaces
10(20)
1.3.1 Deforestation and Land-use Changes
10(6)
1.3.2 Water Related Problems
16(3)
1.3.3 Fire, Grazing, and Land Degradation
19(2)
1.3.4 Drought, Floods, Frost, and Desertification
21(4)
1.3.5 Coupling Between Sufface and Atmosphere: The Role of the Atmospheric Boundary Layer
25(5)
1.4 Role and Capabilities of Measurements Made From Space
30(18)
1.4.1 Research Programmes
30(2)
1.4.2 Expected Information
32(1)
1.4.3 Research Strategy
33(2)
1.4.4 Observation of Changes in Heterogeneous Landscapes: Spatial and Temporal Scales
35(1)
1.4.5 Land-surface Change Indicators Observable from Space
36(19)
Spectral Characteristics of Vegetation and Soils
36(4)
Responses of Remote Sensing Signals to Changes of Land-surface Properties
40(8)
1.5 About this Book
48(3)
Chapter 2 Processing and Archiving of Satellite and Ancillary Data 51(86)
2.1 Introduction
51(4)
2.2 The Remote Sensing Data Base
55(15)
2.2.1 Satellite Instruments
55(11)
The NOAA Observing System
55(2)
Meteosat
57(2)
Nimbus-7
59(1)
Landsat
59(2)
SPOT
61(1)
DMSP
62(1)
ERS-1 and ERS-2
62(1)
TRMM
63(1)
Terra
64(1)
Envisat
65(1)
Aqua
66(1)
2.2.2 Aircraft Instruments
66(4)
The Use of Aircraft for Land-surface Process Studies
66(1)
AVIRIS
67(1)
TMS
68(1)
AIRSAR
68(1)
DIAL
69(1)
2.3 Reception, Acquisition and Availability of Satellite Data
70(4)
2.3.1 Reception of AVHRR (HRPT) Data
70(2)
2.3.2 Reception of Meteosat Data
72(1)
2.3.3 Acquisition of Landsat TM Data
72(1)
2.3.4 Acquisition of SPOT Data
73(1)
2.3.5 Acquisition of Nimbus SMMR and NOAA-AVHRR GAC Data
73(1)
2.3.6 Acquisition of ERS 1/2 Data
74(1)
2.4 Calibration of Satellite Data
74(22)
2.4.1 Calibration of the AVHRR Short Wave Channels
74(14)
Detection and Causes of Signal Degradation
74(1)
Effective Signal Degradation of the NOAA-11 AVHRR Shortwave Channels
75(6)
Intercalibrati on of NOAA-14 and NOAA-11 Instruments
81(2)
Comparison with Other Calibration Studies
83(1)
Intercalibration Between NOAA-16 and NOAA-11 Instruments
84(4)
2.4.2 Calibration of AVHRR Thermal Channels
88(2)
2.4.3 Conversion of Meteosat Signals to Absolute Values
90(2)
Visible Channel
90(2)
Infrared Channel
92(1)
2.4.4 Conversion of Landsat Data to Absolute Values
92(1)
2.4.5 Conversion of SPOT Data to Absolute Values
93(2)
2.4.6 Calibration of Nimbus 7 SMMR Data and Orbit Stability
95(1)
2.5 Georeferencing and Geographical Registration
96(4)
2.5.1 Georeferencing of AVHRR Data
96(1)
2.5.2 Map Projections and Registration Methods
96(3)
2.5.3 Universal-Transversal-Mercatorprojection (UTM)
99(1)
2.6 Cloud Detection and Elimination
100(12)
2.6.1 Definition of the Cloudless Atmosphere and "Cloud Screening"
100(1)
2.6.2 Previous Cloud Detection Algorithm
100(1)
2.6.3 Cloud Mask Generation Used for the MEDOKADS Product: The Dynamic Threshold Algorithm
101(2)
2.6.4 Improved APOLLO Cloud Analysis
103(1)
2.6.5 Reconstruction of Cloudless Time Series with the Aid of Fourier Components
104(8)
Time Series Analysis
104(1)
Fourier Transform
105(2)
Harmonic Analysis of Numerical Time Series (HANTS)
107(5)
2.7 Ancillary Data
112(16)
2.7.1 Introduction
112(1)
2.7.2 Elevation of Land Surface
113(1)
2.7.3 State of the Atmosphere
114(14)
Operational Data Sources
114(2)
Water Vapour
116(6)
Ozone
122(1)
Aerosol
122(4)
Comparative Surface Measurements
126(2)
2.8 Satellite Data Archiving
128(9)
2.8.1 Development of Physical Archives Media
128(2)
2.8.2 Examples of Data Archives
130(1)
Raw Data Archive At the Free University of Berlin
130(1)
Preprocessed AVHRR Data Remapped to Polar Stereographic Map Projection
130(1)
2.8.3 The Mediterranean Extended Daily One-km AVHRR
Data Set MEDOKADS of the Free University of Berlin
131(2)
2.8.4 Other Satellite Data Archives
133(6)
AVHRR Data
133(1)
Archives of Meteosat Data
134(1)
Windscatterometer Data
134(1)
Towards a Distributed On-line Access Archive
135(2)
Chapter 3 Radiative Processes of the Surface - Atmosphere System 137(54)
3.1 Introduction
137(2)
3.2 Interactions of Electromagnetic Waves with the Surface
139(29)
3.2.1 Elementary Processes
139(12)
Plain Surfaces
139(6)
Scattering and Reflection From Complex Surface Structures
145(3)
Reflectance Terminology
148(3)
3.2.2 Solar Radiation
151(8)
Interaction With Soils
151(2)
Interaction with Water and Wet Surfaces
153(1)
Interaction With Vegetation Covered Soils
154(3)
The Albedo Dilemma
157(1)
Net Radiation at Inclined Surfaces
158(1)
3.2.3 Thermal IR Radiation
159(2)
3.2.4 Microwave Radiation
161(7)
Spectral Range
161(1)
Technology
162(1)
Dielectric Constant
163(1)
Emission
164(2)
Effect of Vegetation
166(1)
Reflection and Scattering
167(1)
3.3 Atmospheric Radiative Transfer
168(9)
3.3.1 Processes
168(3)
3.3.2 Radiative Transfer in Scattering Atmospheres
171(2)
3.3.3 Radiative Transfer in Absorbing and Emitting Atmospheres
173(3)
3.3.4 The Overlapping Region Around 3 μm
176(1)
3.4 Radiation Codes Suited for Atmospheric Corrections
177(12)
3.4.1 A Landsat-TM scheme
177(2)
3.4.2 A One Parameter Meteosat and NOAA-AVHRR Scheme
179(1)
3.4.3 Split-window Technique (SWT)
180(2)
3.4.4 Multi-angle Methods
182(1)
3.4.5 The HITRAN, MODTRAN, and LOWTRAN Family
183(2)
3.4.6 The "Simulation of the Satellite Signal in the Solar Spectrum" Algorithm
185(2)
3.4.7 Autonomous Atmospheric Compensation (AAC)
187(1)
3.4.8 A Four-stream Atmospheric Correction Procedure for Broadband Albedo
188(1)
3.5 From Basic Theory to Application
189(2)
Chapter 4 Primary Level Products 191(58)
4.1 Introduction
191(2)
4.2 From Radiance to Reflectance
193(16)
4.2.1 Top of Atmosphere Spectral Reflectance
193(1)
4.2.2 Normalization of TOA-data for Illumination and Observation Geometry
194(13)
Methods
194(1)
Results of Model Calculations
195(7)
Empirical Determination of the BRDF
202(5)
4.2.3 Some Immediate Conclusions
207(1)
4.2.4 From TOA to Surface Reflectance
207(2)
4.3 Intercomparison and Validation of Reflectance Measurements
209(13)
4.3.1 Techniques
209(1)
4.3.2 Test for Atmospheric Correction
210(1)
4.3.3 Area Integrated Reflectances of the EFEDA Experimental Areas Derived From Landsat-TM and AVHRR Data
211(1)
4.3.4 Comparative Ground Based Measurements
212(10)
General Remarks
212(1)
Albedometer Measurements
212(6)
Reflectance Spectra
218(1)
Radiometric Measurements
219(1)
Comparison with Satellite Data
219(3)
4.4 Radiometric Temperatures
222(12)
4.4.1 Infrared TOA Radiometric Temperatures
222(1)
4.4.2 Radiometric Surface Temperatures
223(1)
4.4.3 Sea Surface Temperatures SST
224(1)
4.4.4 Analytic Representation of the Diurnal Temperature Cycle
225(3)
4.4.5 Microwave Brightness Temperatures
228(4)
Atmospheric Effects on Microwave Signals
232(1)
4.4.7 Validation of Radiometric Temperatures
232(2)
Thermal Infrared Radiometric Temperatures
232(2)
Microwave Brightness Temperatures
234(1)
4.5 Active Microwave Products
234(7)
4.5.1 Primary Products
234(6)
4.5.2 Validation of Active Microwave Data
240(1)
4.6 Vegetation Indices
241(8)
4.6.1 Spectral Shortwave Indices
241(3)
4.6.2 Microwave Indices
244(7)
Microwave Polarization Difference Index
244(1)
MPDI and NDVI
245(4)
Chapter 5 Higher Level Variables and Their Validation 249(120)
5.1 Introduction
249(2)
5.2 Radiative Properties of Land Surfaces I: Emissivity and Thermodynamic Temperature
251(14)
5.2.1 TISI Algorithm
251(6)
5.2.2 Relation Between Emissivity and NDVI
257(1)
5.2.3 Validation
258(7)
5.3 Radiative Properties of Land Surfaces II: Broad-band Hemispherical Reflectance
265(11)
5.3.1 Narrow-band to Broad-band Conversion
265(7)
5.3.2 Validation
272(4)
5.4 Radiation Fluxes
276(21)
5.4.1 Nomenclature
276(1)
5.4.2 Net Shortwave Radiation Flux Density
276(5)
5.4.3 Net Longwave Radiation Flux Density
281(2)
5.4.4 Radiant Exposure
283(2)
5.4.5 Validation
285(12)
Instrumentation
285(4)
Typical Radiation Fluxes at the Surface
289(2)
Comparison with Satellite Data
291(4)
Radiation Fluxes at High Spatial Resolution
295(2)
5.5 Surface Heat Fluxes
297(28)
5.5.1 Theoretical Basis
297(2)
5.5.2 Computation Schemes
299(8)
DEMI-SEC
299(1)
SEBAL
299(6)
Hydrological Approach
305(2)
5.5.3 Results and Validation
307(18)
Surface Temperatures as Wetness Indicator
307(1)
Soil Heat Flux
308(6)
Sensible and Latent Heat Fluxes
314(6)
Diurnal Evolution of Fluxes
320(3)
Other SEBAL Products: Resistance to Evaporation
323(2)
5.6 Hydrological Aspects I: Soil Moisture
325(12)
5.6.1 Dual-Frequency Approach
325(2)
Algorithm
325(1)
Validation
326(1)
5.6.2 Estimating Near Surface Soil Moisture with SAR Systems
327(14)
Introduction
327(1)
Method
328(3)
SAR Estimates of Soil Moisture Content During Efeda-spain and Hapex-sahel
331(6)
Conclusions
337(1)
5.7 Hydrological Aspects II: Precipitation
337(4)
5.8 Indicators of Vegetation Conditions
341(22)
5.8.1 Photosynthetic Active Radiation, Vegetation Indices and LAI
341(5)
Definitions
341(1)
Leaf Area - Vegetation Index Relationship
342(3)
"Red Edge" Shift and Chlorophyll Content
345(1)
5.8.2 Field Radiometry and Data Processing
346(2)
5.8.3 A Case Study on Corn and Barley
348(6)
Experimental Site and Ground Measurements
348(2)
Results of Broad Band Analysis
350(3)
Results of the High Spectral Resolution Analysis
353(1)
5.8.4 Comments
354(1)
5.8.5 Canopy Water Content Derived from Optical Data
355(18)
Algorithm
355(3)
Results
358(5)
5.9 Climate Aspects
363(6)
Chapter 6 From Research to Application 369(194)
6.1 Introduction
369(4)
6.2 Biosphere Processes: Key Variables, Models and Scales
373(10)
6.2.1 Main Driving Variables of Biosphere Processes
373(4)
Processes
373(2)
Models
375(2)
6.2.2 Local Processes and Global Models: Spatial Heterogeneity and Scaling
377(4)
6.2.3 From Local to Global Scales
381(2)
6.3 Characterization of Local Vegetation Development
383(6)
6.4 Change Detection Methods
389(4)
6.4.1 Mapping and Monitoring of Land-surface Changes
389(1)
6.4.2 Change Detection Techniques
390(3)
6.5 Scales of Land-surface Variability
393(14)
6.5.1 Spatial Pattern
393(10)
Mediterranean Topographic Structures
393(7)
Vertical Structures
400(3)
6.5.2 Classification and Aggregation
403(2)
6.5.3 Temporal Scales
405(2)
6.6 Combination of Satellite Data of Different Provenience
407(6)
6.6.1 Integration of Data with Different Spatial and Temporal Features
407(1)
6.6.2 Merging NOAA-AVHRR and Landsat-TM Vegetation Indices
407(6)
6.7 Multispectral Classification of Land-surface Types
413(10)
6.7.1 Methodology
413(1)
6.7.2 Example of a supervised classification
413(3)
6.7.3 Surface Discrimination by Application of the Temperature Independent Spectral Indices TISI
416(5)
Introduction
416(1)
Methodology of Parameters Retrieval
417(1)
Data Used
417(4)
Conclusions
421(1)
6.7.4 Vegetation Canopy Characterization by Microwave Transmittance
421(2)
6.8 Decomposition of Pixel Contents
423(10)
6.8.1 Spectral Decomposition
423(6)
Prerequisits
423(1)
Theory
424(3)
Example
427(2)
6.8.2 Fractional Vegetation Cover Determination by Unmixing Surface Temperature
429(4)
6.9 Seasonal and Interannual Variability as Seen in NOAA-AVHRR Images
433(20)
6.9.1 Thermal Infrared Data Series
433(4)
6.9.2 Short-wave Channels Data Series
437(16)
The Role of Vegetation as Change Indicator
437(1)
Basin-wide Data Representation
438(6)
Regional Variability
444(9)
6.10 Vineyard Change Detection
453(8)
6.10.1 Introduction
453(1)
6.10.2 Methodology
454(1)
6.10.3 Results
454(7)
6.11 Estimation of Weather Impact on Vegetation Cover Along the Israeli Transition Zone Using AVHRR Data
461(8)
6.11.1 Introduction
461(1)
6.11.2 Study Area
462(1)
6.11.3 Method
462(1)
6.11.4 Results and Discussion
463(4)
6.11.5 Conclusion
467(2)
6.12 Monitoring of Soil Moisture Fields and Change Detection by Passive Microwave Remote Sensing
469(8)
6.12.1 Introduction
469(1)
6.12.2 The Dual-Frequency Approach
469(2)
6.12.3 Available Data and Validation
471(1)
6.12.4 Degradation/Aridification Mapping over the Iberian Peninsula
472(5)
6.13 Integration of Conventional and Remote Sensing Data to Model Transpiration of Forest Mediterranean Ecosystems
477(16)
6.13.1 Background
477(1)
6.13.2 The Model FOREST - BGC
478(1)
6.13.3 Study Area and Data
479(1)
6.13.4 Ancillary Data
480(2)
Topography
480(1)
Meteorological Data
481(1)
Surface Data: Leaf Area Index
481(1)
Surface Data: Transpiration
481(1)
Satellite Images
482(1)
6.13.5 Data Processing
482(3)
Evaluation Strategy
482(1)
Simulation of Meteorological Data for the Forest Test Sites
483(1)
Derivation of LAI Profiles From Different Sources
483(1)
Calibration and Validation of FOREST-BGC
484(1)
6.13.6 Results
485(4)
Simulated Meteorological Data
485(1)
Measured and Estimated Daily LAI profiles
486(1)
Model Calibration
487(1)
Model Validation
487(2)
6.13.7 Study Area San Rossore
489(2)
6.13.8 Conclusions
491(2)
6.14 Use of GAC NDVI Data for Cropland Identification and Yield Forecasting in Mediterranean African Countries
493(14)
6.14.1 Introduction
493(1)
6.14.2 Study Area
494(1)
Environmental Features
494(1)
Agricultural Features
495(1)
6.14.3 Data
495(2)
Cartographic Data
495(1)
Crop Yield Data
496(1)
Satellite Data
496(1)
6.14.4 Data Processing and Results
497(8)
Computer Facilities
497(1)
Pre-processing
497(1)
Correlation Analysis with Global NDVI Data
497(1)
Correlation Analysis with NDVI Data of Single Land Cover Classes
498(2)
Correlation Analysis with NDVI Data of Selected Pixels
500(4)
Evaluation of Produced Maps
504(1)
Evaluation of the Procedure for Operational Yield Forecasting
504(1)
6.14.5 Conclusions
505(2)
6.15 Drought and Fire Impacts
507(16)
6.15.1 Introduction
507(1)
6.15.2 Climatological Characterization and Preliminary Analysis of Burned Area in A Study Pilot Area
508(2)
6.15.3 Satellite Image Processing
510(2)
6.15.4 Forest Evolution and its Relationship with Rainfall: Application to Post-fire Evolution
512(4)
Site Selection
512(1)
Temporal Characteristics of NDVI and its Relationship with Rainfall
513(3)
6.15.5 Multispectral Analysis of Burned Areas
516(5)
6.15.6 Discussion and Conclusions
521(2)
6.16 Assimilation of Initial Soil Moisture Fields with Meteosat and NOAA Data
523(18)
6.16.1 Introduction
523(2)
6.16.2 Assessment of the Land Surface Energy Balance Using Satellite Data
525(3)
6.16.3 Outline of A "Poor Man's" Assimilation Procedure
528(2)
Basic Assimilation Steps
528(1)
Horizontal Averaging
529(1)
Verification of Results
530(1)
6.16.4 Selected Case Study and Results
530(7)
Selected Case Study
530(2)
Verification of Sebal-results with Ground Based Flux Measurements
532(1)
Construction of A New Soil Moisture Field
533(1)
Results of Simulations with the New Initial Soil Moisture Field
534(3)
6.16.5 Conclusions and Guidelines for Further Development
537(4)
6.17 Methodology for Validation of Remote Sensing Data Products: The Valencia Anchor Station
541(18)
6.17.1 Introduction
541(1)
6.17.2 Definition of Anchor Stations
542(3)
6.17.3 Spanish Anchor Stations
545(1)
6.17.4 Scientific Objectives of the Valencia Anchor Station
545(3)
Definition of A Large Scale Validation Area for Low Spatial Resolution Missions
545(1)
Definition and Characterisation of A Large Scale Reference Pixel
546(1)
Scaling Issues: Aggregation and Disaggregation, Time Interpolation and Spatial Averaging
547(1)
6.17.5 Specifications of the Valencia Anchor Station
548(5)
6.17.6 Simulation of Top of the Atmosphere Ceres Radiances
553(3)
6.17.7 Conclusions and Future Activities
556(3)
6.18 Assessment of Land-surface Changes in Space and Time - General Conclusions
559(4)
Appendices 563(152)
Appendix 1 The ECHIVAL Field Experiment in Desertification Threatened Areas EFEDA
565(34)
A.1.1 The EFEDA Research Concept
565(1)
A.1.2 The Castilla - La Mancha Experiment
566(19)
A.1.4 The Matera-Rutigliano Experimental Site
585(3)
A.1.5 The Tuscan Experimental Sites
588(3)
A.1.6 Reflectance and Albedo Measurements in Africa
591(4)
A.1.7 General Results
595(4)
Appendix 2 Meteorological Terminology
599(4)
Appendix 3 Soils
603(8)
A.3.1 Description of Soils
603(1)
A.3.2 Soil Types
603(5)
A.3.3 Soil Degradation
608(3)
Appendix 4 Characteristics of Earth Observation Satellites and Remote Sensing Instruments
611(20)
A. Satellites and Their Instruments
611(17)
B. Aircraft Instruments
628(3)
Appendix 5 Useful Formulae and Data
631(12)
A.5.1 The Spectrum of the Solar and Terrestrial Radiation
631(1)
A.5.2 Solar Radiation
632(4)
A.5.3 Airmass
636(1)
A.5.4 Optical Depth of the Atmosphere
637(1)
A.5.5 Determination of the Optical Depth From the Ground
638(1)
A.5.6 Relationship Between UTM and Longitude/Latitude Coordinates
639(2)
A.5.7 Evaporation Equivalents
641(1)
A.5.8 Relationship Between Dielectric Constant and Soil Moisture
641(2)
Appendix 6 Spectral Measurements
643(38)
A.6.1 Introduction
643(1)
A.6.2 Atmospheric Infrared Spectra
643(5)
A.6.3 Spectral Atmospheric Transmission and Optical Depth in the Wavelength Range of Solar Radiation
648(5)
A.6.4 Angular Distribution of Spectral Longwave Infrared Surface Reflectance
653(6)
A.6.5 Spectrometric Field Measurements of Surface Reflectance
659(10)
A.6.6 Spectral Surface Reflection and Albedo
669(12)
Appendix 7 Scintillometry
681(4)
Appendix 8 AVHRR Time Series
685(30)
A.8.1 Presentation of Large Scale Satellite Data Time Series
685(2)
A.8.2 Temperature Time Series
687(5)
A.8.3 AVHRR Short-wave Channel Products
692(23)
Goal
692(1)
Potential Error Sources
693(6)
Mean Value and Trend Maps
699(11)
Striking Deviations From Mean Values During the Period from 1989 to 2004
710(1)
Conclusions
710(5)
References 715(30)
Glossary 745(4)
Index 749