Atjaunināt sīkdatņu piekrišanu

E-grāmata: Membrane and Desalination Technologies

Edited by , Edited by , Edited by , Edited by
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 213,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In this essential new volume, Volume 13: Membrane and Desalination Technologies, a panel of expert researchers provide a wealth of information on membrane and desalination technologies. An advanced chemical and environmental engineering textbook as well as a comprehensive reference book, this volume is of high value to advanced graduate and undergraduate students, researchers, scientists, and designers of water and wastewater treatment systems. This is an essential part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. Chapters adopt the series format, employing methods of practical design and calculation illustrated by numerical examples, including pertinent cost data whenever possible, and exploring in great detail the fundamental principles of the field. Volume 13: Membrane and Desalination Technologies is an essential guide for researchers, highlighting the latest developments in principles of membrane technology, membrane systems planning and design, industrial and municipal waste treatments, desalination requirements, wastewater reclamation, biofiltration, and more.

This text offers a wealth of information on membrane and desalination technologies, employing methods of practical design and calculation illustrated by numerical examples, including cost data where possible, and exploring the fundamentals of the field.
Preface v
Contributors xix
1 Membrane Technology: Past, Present and Future
1(46)
A.G. (Tony) Fane
Rong Wang
Yue Jia
1 Introduction
2(3)
1.1 Membranes, Membrane Classifications and Membrane Configurations
2(1)
1.2 Membrane Processes, Operation Modes and Membrane Fouling
3(2)
2 Histrorical Developments of Membranes and Membrane Processes
5(14)
2.1 Historical Background (Pre-1980s)
5(2)
2.2 Reverse Osmosis
7(5)
2.3 Ultrafiltration
12(2)
2.4 Nanofiltration
14(1)
2.5 Microfiltration
14(1)
2.6 Gas Separation
15(1)
2.7 Pervaporation
16(2)
2.8 Membrane Bioreactors
18(1)
3 Current Status of Membrane Technology
19(14)
3.1 RO for Seawater and Brackish Water Desalination and Water Reclamation
20(6)
3.2 Applications of NF, UF and MF Membranes
26(2)
3.3 MBRs for Wastewater Treatments
28(1)
3.4 Gas Separation
29(2)
3.5 PV and its Hybrid Systems
31(2)
4 Future Prospects
33(5)
4.1 Membranes for Water, Food and Biopharmaceutical Industries
33(1)
4.2 Membranes for Refinery, Petrochemical and Natural Gas Industries
34(1)
4.3 Challenges for the Membrane Industry
35(1)
4.4 Promising Membrane Systems
36(2)
5 Concluding Remarks
38(9)
References
38(9)
2 Preparation of Polymeric Membranes
47(54)
Jizhong Ren
Rong Wang
1 Introduction
48(1)
2 Membrane Classification
48(5)
2.1 Isotropic Membranes
49(1)
2.2 Anisotropic Membranes
50(1)
2.3 Membrane Processes
51(2)
3 Membrane Materials
53(6)
3.1 Cellulose and Cellulose Acetate
53(1)
3.2 Polysulfone
53(2)
3.3 Polyethersulfone
55(1)
3.4 Polyacrylonitrile
55(1)
3.5 Polyvinylidene Fluoride
55(1)
3.6 Polyetherimide
56(1)
3.7 Polycarbonate
56(1)
3.8 Polyamide
57(1)
3.9 Polyimide
57(1)
3.10 Polyether Ether Ketones
58(1)
3.11 Poly(phthalazine ether sulfone ketone)
59(1)
3.12 Polyether Block Amide
59(1)
4 Phase Inversion Membranes
59(19)
4.1 Thermodynamics of the Polymer Solution
61(8)
4.2 Membrane Formation Processes
69(9)
5 Preparation of Asymmetric Membranes by Phase Inversion Technique
78(15)
5.1 Preparation of Hollow Fiber Membranes
78(13)
5.2 Preparation of Flat Sheet Membranes
91(2)
6 Acronyms
93(1)
7 Nomenclature
94(7)
References
95(6)
3 Advanced Membrane Fouling Characterization in Full-Scale Reverse Osmosis Processes
101(34)
Lianfa Song
Kwee Guan Tay
1 Introduction
102(1)
2 Membrane Fouling and Control
103(6)
2.1 Factors Affecting Membrane Fouling
103(2)
2.2 Types of Fouling in RO Processes
105(1)
2.3 Silt Density Index
106(1)
2.4 Pretreatment
107(1)
2.5 Membrane Cleaning
107(1)
2.6 Challenges
108(1)
3 Quantification of Fouling Potential of Feed Water
109(7)
3.1 Desirable Attributes for Fouling Potential Parameter
109(1)
3.2 An Inclusive Parameter for Fouling Potential
109(2)
3.3 Membrane Device for Fouling Potential Measurement
111(1)
3.4 Properties of Fouling Potential of Feed Water
112(4)
4 Prediction of Fouling in Full-Scale Reverse Osmosis Processes
116(12)
4.1 Model Development
117(2)
4.2 Fouling Development in a Long Membrane Channel
119(5)
4.3 Influence of Feed Water Fouling Potential
124(1)
4.4 Influence of Channel Length
124(1)
4.5 Influence of Clean Membrane Resistance
125(1)
4.6 Characteristic Pressure of a Long Membrane Channel
126(2)
5 Membrane Fouling Quantification in Full-Scale Reverse Osmosis Processes
128(3)
5.1 The Need for an Effective Fouling Characterization Method
128(1)
5.2 Filtration Coefficient of a Long Membrane Channel
129(1)
5.3 Fouling Index for a Long Membrane Channel
130(1)
6 Conclusions
131(1)
7 Acronyms
132(1)
8 Nomenclature
132(3)
References
133(2)
4 Membrane Filtration Regulations and Determination of Log Removal Value
135(66)
Nazih K. Shammas
Lawrence K. Wang
1 Introduction
136(1)
2 Membranes for the Potable Water Industry
137(1)
3 Long Term 2 ESWTR and Stage 2 DBPR Regulations
138(8)
3.1 Long Term 2 Enhanced Surface Water Treatment Rule
138(1)
3.2 Stage 2 Disinfectants and Disinfection Byproducts Rule
139(1)
3.3 Requirements for Membrane Filtration under the LT2ESWTR
140(2)
3.4 Considering Existing Membrane Facilities under the LT2ESWTR
142(2)
3.5 Membrane Terminology Used in the Guidance Manual
144(1)
3.6 Summary of US EPA Regulatory Framework
145(1)
4 Challenge Testing: Determination of LRV
146(33)
4.1 Core Requirements for Challenge Testing
147(1)
4.2 Test Organization Qualification
148(1)
4.3 General Procedure for Designing a Challenge Test Protocol
149(1)
4.4 Nondestructive Performance Testing
150(2)
4.5 Selection of Modules for Challenge Testing
152(1)
4.6 Small-Scale Module Testing
153(1)
4.7 Target Organisms and Challenge Particulates
153(5)
4.8 Challenge Test Solutions
158(6)
4.9 Challenge Test Systems
164(6)
4.10 Sampling
170(2)
4.11 Analysis and Reporting of Challenge Test Results
172(3)
4.12 Retesting of Modified Membrane Modules
175(1)
4.13 Grandfathering Challenge Test Data from Previous Studies
176(2)
4.14 Summary of the US EPA Required Challenge Testing
178(1)
5 Direct Integrity Testing
179(3)
5.1 Core Requirements of Direct Integrity Testing
179(1)
5.2 Resolution and Sensitivity
179(3)
5.3 Summary of the US EPA Required Direct Integrity Testing
182(1)
6 Continuous Indirect Integrity Monitoring
182(2)
6.1 Core Requirements of Continuous Indirect Integrity Monitoring
182(1)
6.2 Summary of the US EPA Required Continuous Indirect Integrity Monitoring
183(1)
7 Design Example: Chanllenge Test Solution Design Scenario
184(3)
8 Guidelines for Comparing Membrane Filtration with Other Water and Wasterwater Treatment Processes for Giardia Cysts, Cryptosporidium Oocysts and Virus Removal
187(3)
9 Case Study of Challenge Testing for Comparing Microfiltration and Continuously Backwashed Dual Sand Filtration Technologies
190(5)
10 Acronyms
195(1)
11 Nomenclature
196(5)
References
197(4)
5 Treatment of Industrial Effluents, Municipal Wastes, and Potable Water by Membrane Bioreactors
201(36)
Lawrence K. Wang
Ravinder Menon
1 Introduction
202(6)
1.1 General Introduction
202(1)
1.2 Historical Development
202(1)
1.3 Physical-Chemical Pretreatment Prior to Membrane Process
203(2)
1.4 Physical-Chemical-Biological Pretreatment Prior to Membrane Process
205(1)
1.5 Membrane Bioreactors Research and Engineering Applications
206(2)
2 MBR Process Description
208(6)
2.1 Membrane Bioreactor with Membrane Module Submerged in the Bioreactor
208(1)
2.2 Membrane Bioreactor with Membrane Module Situated Outside the Bioreactor
209(1)
2.3 MBR System Features
210(2)
2.4 Membrane Module Design Considerations
212(2)
3 Process Comparison
214(3)
3.1 Similarity
214(1)
3.2 Dissimilarity
215(2)
4 Process Applications
217(1)
4.1 Industrial Wastewater Treatment
217(1)
4.2 Municipal Wastewater and Leachate Treatments
217(1)
5 Practical Examples
218(6)
5.1 Example 1: Dairy Industry
218(1)
5.2 Example 2: Landfill Leachate Treatment
219(2)
5.3 Example 3: Coffee Industry
221(2)
5.4 Example 4: Cosmetics Industry
223(1)
6 Conclusions
224(1)
6.1 Industrial Applications
224(1)
6.2 Municipal Applications
224(1)
6.3 Acknowledgments
225(1)
6.4 Commercial Availability
225(1)
7 Recent Advances in Membrane Bioreactor Technology
225(12)
7.1 Electrodialysis Membrane Bioreactor for Product Separation and pH Control
225(1)
7.2 Ethanol Production in Membrane Distillation Bioreactor
225(1)
7.3 Denitrification of Nitrate-Contaminated Drinking Water Using Membrane Bioreactor
225(1)
7.4 Treating Contaminated Surface Water for Drinking Water Production Using Membrane Bioreactor
226(1)
7.5 Removing Bromate from Drinking Water Using the Ion Exchange Membrane Bioreactor
226(1)
7.6 New Membrane Bioreactor Design and Applications
227(1)
7.7 Full-Scale Membrane Bioreactor for Wastewater Treatment: Carnation Wastewater Treatment Plant
228(1)
7.8 Bioremediation Using Membrane Bioreactor-Sequencing Batch Bioreactor
228(1)
7.9 Membrane Bioreactor Design
229(1)
7.10 Using Flotation as a Pretreatment to Membrane Processes
229(1)
7.11 Full-Scale Membrane Bioreactor Technology for Water Reclamation
229(3)
References
232(5)
6 Treatment of Food Industry Foods and Wastes by Membrane Filtration
237(34)
Lawrence K. Wang
Nazih K. Shammas
Munir Cheryan
Yu-Ming Zheng
Shuai-Wen Zou
1 Introduction
238(1)
2 Membrane Processes, Modules, and Equipment
239(8)
2.1 Membrane Processes
239(1)
2.2 Membrane Modules and Equipment
240(5)
2.3 Cost of Membrane Filtration
245(2)
3 Operational Problems and Engineering Solutions
247(2)
3.1 Membrane Scaling
247(1)
3.2 Metal Oxides Fouling
248(1)
3.3 Colloidal Fouling
248(1)
3.4 Biological Fouling
248(1)
3.5 Cleaning Agent Fouling
248(1)
4 Membrane Filtration System
249(1)
4.1 Basic Membrane System
249(1)
4.2 Uniform Transmembrane Pressure (UTP) System
250(1)
5 Applications of Membrane Technology in the Food Industry
250(15)
5.1 Production of Dairy Products Using MF, UF, and RO
250(3)
5.2 Production of Fruit and Tomato Juices Using MF, UF, and RO
253(2)
5.3 Removal of Salts from Food Processing Water Streams Using NF
255(1)
5.4 Recovery of Potato Starch Effluent Using RO
256(1)
5.5 Production of Yeast by Aerobic Fermentation, MF and NF
257(1)
5.6 Production of Cyclodextrin from Starch Using CMR, UF, and NF
258(4)
5.7 Production of Ethanol from Food Materials Using UF, Fermentation, CMR, and MF
262(2)
5.8 Removal of Volatile Organic Compounds from Process Water by Pervaporation
264(1)
5.9 Application of Advanced Ion Exchange Membrane Processes in Food Processing
264(1)
6 Nonfood Applications of Membrane Technology in the Food Industry
265(2)
6.1 Nutrient Removal from Wastewater Streams
265(1)
6.2 Organics Removal from Wastewater Streams
265(2)
7 Nomenclature
267(4)
References
267(4)
7 Membrane Separation: Basics and Applications
271(62)
Jiaping Paul Chen
Honghui Mou
Lawrence K. Wang
Takeshi Matsuura
Yuting Wei
1 Introduction
272(1)
2 Membrane and Membrane Separation Processes for Water Treatment
273(12)
2.1 Basics of Membrane and Membrane Separation System
273(1)
2.2 Membrane Separation Processes for Water Treatment
274(8)
2.3 Case Studies on Membrane Applications in Water Treatment
282(3)
3 Membrane Materials: Preparation and Modification
285(4)
3.1 Membrane Materials
285(1)
3.2 Types of Membrane and Their Formation
285(4)
4 Membrane Characterization
289(1)
4.1 Porous Membrane
289(1)
4.2 Non-porous Membrane
290(1)
5 Mass Transport in Membranes
290(7)
5.1 The Solution---Diffusion Model
291(5)
5.2 The Pore Model
296(1)
6 Membrane Module and Process Design
297(15)
6.1 Introduction
297(1)
6.2 Typical Membrane Modules
298(4)
6.3 Design Considerations
302(4)
6.4 Engineering Design
306(5)
6.5 Membrane Testing
311(1)
6.6 Economics of Membrane Processes
311(1)
7 Membrane Fouling and Prevention
312(6)
7.1 Mechanisms
312(3)
7.2 Feed Pre-treatment
315(3)
8 Membrane Cleaning and Flux Restoration
318(5)
8.1 Chemical Cleaning Methods
319(3)
8.2 Physical Cleaning Methods
322(1)
9 Recent Advances in Membrane Separation
323(2)
9.1 Membrane Bioreactors for Wastewater Treatment
323(1)
9.2 Gas Separation
324(1)
10 Summary
325(1)
11 Abbreviations
325(1)
12 Nomenclature
325(2)
13 Subscripts
327(6)
References
327(6)
8 Membrane Systems Planning and Design
333(58)
Nazih K. Shammas
Lawrence K. Wang
1 Introduction
334(1)
2 Pilot Testing
334(13)
2.1 Planning
335(3)
2.2 Testing Objectives
338(5)
2.3 Testing and Monitoring
343(3)
2.4 Report Development
346(1)
3 Operational Unit Processes
347(8)
3.1 Pretreatment
347(3)
3.2 Backwashing
350(1)
3.3 Chemical Cleaning
351(2)
3.4 Integrity Testing
353(1)
3.5 Post-Treatment
354(1)
4 Basic Principles of System Design and Operation
355(9)
4.1 General Concepts
355(1)
4.2 MF, UF, and MCF Processes
356(3)
4.3 NF and RO Processes
359(1)
4.4 Hydraulic Configurations
360(4)
5 System Design Considerations
364(12)
5.1 Membrane Flux
366(1)
5.2 Water Quality
367(3)
5.3 Temperature Compensation
370(3)
5.4 Cross-Connection Control
373(2)
5.5 System Reliability
375(1)
6 Residuals Treatment and Disposal
376(4)
6.1 Backwash Residuals
377(1)
6.2 Chemical Cleaning Residuals
378(1)
6.3 Concentrate
379(1)
7 Initial Start-up
380(5)
7.1 Temporary System Interconnections
380(1)
7.2 Flushing and Testing Without Membranes
381(1)
7.3 Membrane Installation
382(1)
7.4 System Disinfection
382(1)
7.5 Initial Direct Integrity Testing
383(1)
7.6 Acceptance Testing
384(1)
7.7 Operator Training
385(1)
8 Acronyms
385(1)
9 Nomenclature
386(5)
References
387(4)
9 Adsorption Desalination: A Novel Method
391(42)
Kim Choon Ng
Ibrahim I. El-Sharkawy
Bidyut Baran Saha
Anutosh Chakraborty
1 Introduction
392(10)
1.1 Description of Sorption Processes
393(1)
1.2 Adsorption Equilibrium
393(1)
1.3 Adsorption Kinetics
394(3)
1.4 Heat of Adsorption
397(3)
1.5 Classification of Thermally Driven Sorption Systems
400(1)
1.6 Basic Closed Adsorption Cycles
400(2)
2 Adsorption Characteristics of Silica Gel-Water Pair
402(4)
2.1 Physical Adsorption of Silica Gel
402(2)
2.2 Porous Properties of Various Silica Gels
404(2)
3 Isothermal Adsorption of Water Vapor onto Two Types of Silica Gels
406(7)
3.1 Constant Volume-Variable Pressure Test Facility
406(3)
3.2 TGA System: Experimental Set-Up and Procedure
409(1)
3.3 Adsorption Isotherms of Silica Gel-Water Pair
410(3)
4 Thermally Driven Adsorption Desalination
413(8)
4.1 Laboratory Scale Prototype Testing
413(2)
4.2 Definitions and Modeling
415(3)
4.3 Specific Daily Production Vs. Cycle Time
418(1)
4.4 Effect of Heat Source Temperature on the Cycle Performance
419(1)
4.5 Effect of Cooling and Chilled Water Temperature on the Cycle Performance
419(1)
4.6 Adsorption Desalination Plant with Heat Recovery
420(1)
5 Recent Improvements of Adsorption Desalination Plant
421(3)
5.1 Adsorption Desalination Operation at a Relatively Higher Evaporation Temperature
421(2)
5.2 Adsorption Desalination Plant with Mass Recovery
423(1)
6 Design for Large Commercial Adsorption Desalination Plant
424(5)
7 Closure
429(4)
References
429(4)
10 Membrane Processes for Reclamation of Municipal Wastewater
433(44)
Jianjun Qin
Kiran A. Kekre
1 Introduction
434(1)
2 Process Design
435(2)
2.1 Typical Flow Schematics of Membrane Processes
435(1)
2.2 Applications of Reclaimed Water
436(1)
2.3 Characterization of Membrane and Membrane System Performance
436(1)
3 UF for Tertiary Treatment of Municipal Wastewater
437(8)
3.1 Background
437(1)
3.2 Description of Overall Process
438(1)
3.3 Plant Performance
439(6)
3.4 Conclusions
445(1)
4 MF-RO for Reclamation of the Secondary Domestic Effluent
445(5)
4.1 Background
445(1)
4.2 Description of Overall Process
446(1)
4.3 Plant Performance
447(3)
4.4 Conclusions
450(1)
5 TOC Removal in Reclamation of Municipal Wastewater by RO
450(3)
5.1 Background
450(1)
5.2 Description of Overall Process
451(1)
5.3 Plant Performance
451(2)
5.4 Conclusions
453(1)
6 New Option of MBR-RO for Reclamation of Municipal Wastewater
453(8)
6.1 Background
453(1)
6.2 Description of Overall Process
454(2)
6.3 Plant Performance
456(4)
6.4 Conclusions
460(1)
7 Reclamation of a Mixed Sewage Effluent Using UF-RO
461(8)
7.1 Background
461(1)
7.2 Description of Overall Process
462(2)
7.3 Plant Performance
464(5)
7.4 Conclusions
469(1)
8 Recent R&D
469(2)
8.1 Membrane Development
470(1)
8.2 Membrane Processes
470(1)
9 Acronyms
471(1)
10 Nomenclature
472(5)
References
472(5)
11 Potable Water Biotechnology, Membrane Filtration and Biofiltration
477(48)
Puangrat Kajitvichyanukul
Nazih K. Shammas
Yung-Tse Hung
Lawrence K. Wang
Jirapat Ananpattarachai
1 Introduction
478(1)
2 Treatment of Drinking Water using Filtration and Biotechnology
478(6)
2.1 Turbidity Removal
478(1)
2.2 Desalination
479(1)
2.3 Control of Disinfection By-Products
479(1)
2.4 Inactivation and Removal of Targeted Microorganisms
480(1)
2.5 Nitrate Removal from Drinking Water
481(3)
3 Types of Filtration Processes for Water Purification
484(4)
3.1 Biological Slow Sand Filtration
484(1)
3.2 Microfiltration
485(1)
3.3 Ultrafiltration
486(1)
3.4 Nanofiltration
486(1)
3.5 Reverse Osmosis
487(1)
4 Combination of Biotechnology and Filtration Technology
488(11)
4.1 Biofiltration
488(6)
4.2 Membrane Bioreactor
494(2)
4.3 Ion-Exchange Membrane Bioreactor
496(2)
4.4 Biological Activated Carbon Adsorption: Biofilm
498(1)
5 US EPA Studies on DBP Control Through Biofiltration
499(15)
5.1 Pilot-Scale Study, Shreveport, LA
500(1)
5.2 Bench-Scale Studies
501(2)
5.3 Pilot-Scale Study, Cincinnati, OH
503(4)
5.4 Five-Month Pilot-Scale Study
507(3)
5.5 Modeling Biological PM Control
510(4)
5.6 Discussion
514(1)
6 Design Examples
514(3)
7 Nomenclature
517(8)
References
517(8)
12 Desalination of Seawater by Thermal Distillation and Electrodialysis Technologies
525(34)
Jiaping Paul Chen
Lawrence K. Wang
Lei Yang
Yu-Ming Zheng
1 Introduction
525(6)
2 Thermal Distillation
531(9)
2.1 Introduction
531(1)
2.2 Working Mechanisms
532(2)
2.3 Multistage Flash Distillation
534(1)
2.4 Multieffect Distillation
535(1)
2.5 Vapor Compression
536(1)
2.6 Solar Desalination
536(3)
2.7 Important Issues in Design (O&M)
539(1)
3 Electrodialysis
540(9)
3.1 Introduction
540(1)
3.2 Mechanisms
541(1)
3.3 Important Issues in Design
542(3)
3.4 Electrodialysis Reversal
545(3)
3.5 Electrodeionization
548(1)
4 Reverse Osmosis
549(2)
5 Energy
551(1)
6 Environmental Aspect of Desalination
552(2)
7 Recent Advances of Thermal Distillation and Electrodialysis for Desalination
554(1)
7.1 Membrane Distillation
554(1)
7.2 Photovoltaic Electrodialysis
555(1)
7.3 Future Study on Desalination Technologies
555(1)
8 Nomenclature
555(4)
References
556(3)
13 Desalination of Seawater by Reverse Osmosis
559(44)
Jiaping Paul Chen
Edward S. K. Chian
Ping-Xin Sheng
K. G. Nadeeshani Nanayakkara
Lawrence K. Wang
Yen-Peng Ting
1 Introduction
560(1)
2 Membrane Filtration Theory
560(11)
2.1 Osmosis and RO
560(3)
2.2 Membranes
563(2)
2.3 Membrane Filtration Theory
565(4)
2.4 Concentration Polarization
569(1)
2.5 Compaction
570(1)
3 Membrane Modules and Plant Configuration
571(7)
3.1 Membrane Modules
571(4)
3.2 Plant Configuration of Membrane Modules
575(3)
4 Pretreatment and Cleaning of Membrane
578(13)
4.1 Mechanisms of Membrane Fouling
578(2)
4.2 Feed Pretreatment
580(6)
4.3 Membrane Cleaning and Regeneration
586(5)
5 Case Study
591(4)
5.1 Acidification and Scale Prevention for Pretreatment
591(2)
5.2 Cartridge Filters for Prefiltration
593(1)
5.3 Reverse Osmosis
593(1)
5.4 Neutralization and Posttreatment
594(1)
5.5 Total Water Production Cost and Grand Total Costs
594(1)
6 Recent Advances in RO Technology for Seawater Desalination
595(2)
7 Nomenclature
597(6)
References
597(6)
14 Membrane Technologies for Point-of-Use and Point-of-Entry Applications
603(36)
Puangrat Kajitvichyanukul
Yung-Tse Hung
Lawrence K. Wang
1 Introduction
603(2)
2 POU/POE Systems for Home Water Treatment
605(5)
2.1 Types of POU/POE Systems
605(1)
2.2 Technologies in POU/POE Systems
605(1)
2.3 Selection of POU/POE Technologies
606(4)
3 Reverse Osmosis in POU/POE System
610(20)
3.1 Application of Reverse Osmosis in POU/POE
610(4)
3.2 Fundamental Concept of Reverse Osmosis
614(3)
3.3 Types and Configuration of Reverse Osmosis
617(3)
3.4 Components and Installation of Reverse Osmosis in POU/POE Units
620(2)
3.5 Operation and Maintenance of Reverse Osmosis in POU/POE
622(4)
3.6 Fouling and Cleaning of Reverse Osmosis
626(3)
3.7 Membrane Testing for Point-of-Use and Point-of-Entry Purposes
629(1)
4 Design Examples
630(4)
4.1 Design of RO in POU and POE Applications
630(2)
4.2 Calculations
632(2)
5 Nomenclature
634(5)
References
634(5)
15 Membrane Technologies for Oil-Water Separation
639(30)
Paungrat Kajitvichyanukul
Yung-Tse Hung
Lawrence K. Wang
1 Introduction
639(3)
2 Fundamental Knowledge of Oil Water Separation
642(4)
2.1 Oil Properties
642(1)
2.2 Emulsion
643(2)
2.3 Coalescence in Oil Water Separation
645(1)
3 Membrane Technology for Oil Water Separation
646(9)
3.1 Ultrafiltration
648(1)
3.2 Microfiltration
649(1)
3.3 Nanofiltration
650(1)
3.4 Reverse Osmosis
651(1)
3.5 Integrated Membrane System
651(2)
3.6 Membrane Bioreactor
653(2)
4 Advances in Membrane Technology
655(4)
4.1 Modification of Membrane
655(1)
4.2 Improving of Hydrophilicity of Membrane for Oil Water Separation
656(2)
4.3 Development of Inorganic Membrane
658(1)
5 Design Examples
659(3)
5.1 Example 1
661(1)
5.2 Example 2
661(1)
6 Nomenclature
662(7)
References
663(6)
16 Gas-Sparged Ultrafiltration: Recent Trends, Applications and Future Challenges
669(30)
Kaustubha Mohanty
Raja Ghosh
1 Introduction
670(1)
2 Ultrafiltration Basics
671(2)
2.1 Applications of Ultrafiltration
671(1)
2.2 Advantages and Limitations of Ultrafiltration
672(1)
2.3 Fouling Control: The Need for Gas-Sparging
672(1)
3 Fundamentals of Gas---Liquid Two-Phase Flow
673(1)
3.1 Bubbles
673(1)
3.2 Two-Phase Flow Patterns
674(1)
4 Gas-Sparging Inside Membrane Modules
674(9)
4.1 Gas-Sparging in Tubular Membrane Modules
675(1)
4.2 Gas-Sparging in Hollow Fibre Membrane Modules
676(6)
4.3 Gas-Sparging in Flat-sheet Membrane Modules
682(1)
4.4 Mechanisms of Flux Enhancement
683(1)
5 Gas-Sparging in Submerged Membrane Systems
683(4)
5.1 Submerged Flat-Sheet Systems
684(1)
5.2 Submerged Hollow Fibre Membranes
685(2)
6 Applications of Gas-Sparging
687(4)
6.1 Water and Wastewater Treatment
687(2)
6.2 Protein Fractionation and Concentration
689(1)
6.3 Membrane Cleaning
690(1)
7 Practical Issues and Future Challenges
691(1)
8 Conclusions
691(1)
9 Acronyms
692(1)
10 Nomenclature
692(7)
References
692(7)
Index 699