Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mersenne Numbers And Fermat Numbers

(Moscow Pedagogical State University, Russia)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 84,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book contains a complete detailed description of two classes of special numbers closely related to classical problems of the Theory of Primes. There is also extensive discussions of applied issues related to Cryptography. In Mathematics, a Mersennenumber (named after Marin Mersenne, who studied them in the early 17-th century) is a number of the form Mn = 2n - 1 for positive integer n. In Mathematics, a Fermat number (named after Pierre de Fermat who first studied them) is a positive integer of the form Fn = 2k+ 1, k = 2n, where n is a non-negative integer. Mersenne and Fermat numbers have many other interesting properties. Long and rich history, many arithmetic connections (with perfect numbers, with construction of regular polygons etc.), numerous modern applications, long list of open problems allow us to provide a broad perspective of the Theory of these two classes of special numbers, that can be useful and interesting for both professionals and the general audience-- Deza offers a complete detailed description of two classes of special numbers that are closely related to classical problems of the Theory of Primes. She also discusses in depth applied issues related to cryptography. A Mersenne number takes the form Mn=2-1 for positive integer , she says, and a Fermat number is a positive integer in the form F/=2/=1, =2/, where is a non-negative integer. She discusses each in turn, as well as prime numbers and modern applications. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Notations ix
Preface xv
1 Preliminaries
1(38)
1.1 Divisibility of integers
1(7)
1.2 Modular arithmetics
8(3)
1.3 Arithmetic functions
11(5)
1.4 Solution of congruences
16(10)
1.5 Quadratic residues, Legendre symbol and Jacobi symbol
26(3)
1.6 Multiplicative orders, primitive roots and indexes
29(4)
1.7 Continued fractions
33(6)
2 Prime numbers
39(62)
2.1 History of the question
39(4)
2.2 Elementary properties of prime numbers
43(3)
2.3 How to recognize whether a natural number is a prime?
46(16)
2.4 Formulas of primes
62(12)
2.5 Prime numbers in the family of special numbers
74(13)
2.6 Open problems
87(14)
3 Mersenne numbers
101(48)
3.1 History of the question
101(8)
3.2 Elementary properties of Mersenne numbers
109(9)
3.3 Mersenne primes: Prime divisors of Mersenne numbers
118(5)
3.4 Mersenne primes: Lucas-Lehmer test
123(8)
3.5 Mersenne numbers in the family of special numbers
131(10)
3.6 Open problems
141(8)
4 Fermat numbers
149(46)
4.1 History of the question
149(7)
4.2 Elementary properties of Fermat numbers
156(14)
4.3 Fermat primes: Prime divisors of Fermat numbers
170(6)
4.4 Fermat primes: Pepin's test
176(5)
4.5 Fermat numbers in the family of special numbers
181(9)
4.6 Open problems
190(5)
5 Modern Applications
195(54)
5.1 On place of prime numbers in Mathematics
195(7)
5.2 Problems in Number Theory, connected with Mersenne numbers
202(9)
5.3 Problems in Number Theory, connected with Fermat numbers
211(7)
5.4 Prime numbers records and Mersenne numbers
218(6)
5.5 Mersenne and Fermat numbers in Cryptography
224(16)
5.6 Open problems
240(9)
6 Zoo of Numbers
249(10)
7 Mini Dictionary
259(8)
8 Exercises
267(28)
Bibliography 295(8)
Index 303