Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mesoscopic Physics and Electronics

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : NanoScience and Technology
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642719769
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : NanoScience and Technology
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642719769

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea­ ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog­ raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal­ oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.

Papildus informācija

Springer Book Archives
1. Introduction Mesoscopic Systems.- 1.1 Introduction.- 1.2 Length
Scales Characterizing Mesoscopic Systems.- 1.3 Landauers Formula.- 1.4
Fluctuations and AharonovBohm Effect.- 1.5 Ballistic Electron Transport.-
1.6 Coulomb Blockade.-
2. Transport in Quantum Structures.- 2.1
TomonagaLuttinger Liquid in Quantum Wires.- 2.2 Quantum Wires.- 2.3
Magnetophonon Resonance in Quantum Wires.- 2.4 Quantum Dots and Artificial
Atoms.- 2.5 Antidot Lattices Classical and Quantum Chaos.- 2.6 Electric and
Magnetic Lateral Superlattices.- 2.7 Terahertz Spectroscopy of
Nanostructures.- 2.8 WannierStark Effect in Transport.-
3. Quantum Hall
Effect.- 3.1 Crossover from Quantum to Classical Regime.- 3.2 Edge States and
Nonlocal Effects.- 3.3 Magnetocapacitance and Edge States.-
4.
Electron-Photon Interaction in Nanostructures.- 4.1 Introduction.- 4.2 Theory
of Electron-Photon Interaction.- 4.3 Electron-Photon Interaction in
Microcavities.- 4.4 Photonic Crystals.- 4.5 Microcavity Surface Emitting
Lasers.- 4.6 Toward Lasers of the Next Generation.-
5. Quantum-Effect
Devices.- 5.1 Introduction.- 5.2 Electron-Wave Reflection and Resonance
Devices.- 5.3 Electron-Wave Coherent Coupling Devices.- 5.4 Electron-Wave
Diffraction Devices.- 5.5 Devices Using Ultimate Silicon Technology.- 5.6
Circuit Systems Using Quantum-Effect Devices.-
6. Formation and
Characterization of Quantum Structures.- 6.1 Introduction.- 6.2 Quantum Wires
and Dots by MOCVD (I).- 6.3 Quantum Wires and Dots by MOCVD (II).- 6.4
Quantum Wires on Vicinal GaAs (110) Surfaces.- 6.5 Tilted T-Shaped and (775)B
Quantum Wires.- 6.6 SiGe Quantum Structures.