Acknowledgments |
|
xi | |
|
1 Introduction and Overview |
|
|
1 | (41) |
|
|
1 | (1) |
|
1.2 Why Is This Book Important? |
|
|
2 | (1) |
|
1.3 Organization of the Book |
|
|
3 | (1) |
|
|
4 | (2) |
|
|
6 | (1) |
|
1.6 Machine Learning/Intelligence |
|
|
7 | (15) |
|
1.6.1 Regression and Entropy |
|
|
8 | (1) |
|
|
9 | (6) |
|
|
15 | (2) |
|
1.6.4 Unsupervised Learning |
|
|
17 | (1) |
|
1.6.5 Dimensionality Reduction |
|
|
18 | (2) |
|
1.6.6 Optimization and Search |
|
|
20 | (2) |
|
1.7 Artificial Intelligence |
|
|
22 | (9) |
|
|
22 | (3) |
|
|
25 | (3) |
|
|
28 | (3) |
|
1.8 Data Mining/Knowledge Discovery |
|
|
31 | (1) |
|
|
32 | (6) |
|
|
38 | (1) |
|
1.11 System-Based Analysis |
|
|
39 | (1) |
|
|
39 | (3) |
|
|
40 | (2) |
|
2 Parallel Forms of Parallelism |
|
|
42 | (31) |
|
|
42 | (1) |
|
|
43 | (9) |
|
|
43 | (3) |
|
2.2.2 Application to Algorithms and Architectures |
|
|
46 | (5) |
|
2.2.3 Application to Scheduling |
|
|
51 | (1) |
|
2.3 Parallelism by Component |
|
|
52 | (12) |
|
2.3.1 Definition and Extension to Parallel-Conditional Processing |
|
|
52 | (3) |
|
2.3.2 Application to Data Mining, Search, and Other Algorithms |
|
|
55 | (4) |
|
2.3.3 Application to Software Development |
|
|
59 | (5) |
|
2.4 Parallelism by Meta-algorithm |
|
|
64 | (7) |
|
2.4.1 Meta-algorithmics and Algorithms |
|
|
66 | (1) |
|
2.4.2 Meta-algorithmics and Systems |
|
|
67 | (1) |
|
2.4.3 Meta-algorithmics and Parallel Processing |
|
|
68 | (1) |
|
2.4.4 Meta-algorithmics and Data Collection |
|
|
69 | (1) |
|
2.4.5 Meta-algorithmics and Software Development |
|
|
70 | (1) |
|
|
71 | (2) |
|
|
72 | (1) |
|
3 Domain Areas: Where Are These Relevant? |
|
|
73 | (31) |
|
|
73 | (1) |
|
3.2 Overview of the Domains |
|
|
74 | (1) |
|
|
75 | (11) |
|
3.3.1 Document Understanding |
|
|
75 | (2) |
|
3.3.2 Image Understanding |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (7) |
|
|
86 | (15) |
|
|
86 | (4) |
|
|
90 | (1) |
|
3.4.3 Medical Signal Processing |
|
|
90 | (2) |
|
|
92 | (3) |
|
3.4.5 Natural Language Processing |
|
|
95 | (2) |
|
|
97 | (1) |
|
3.4.7 Optical Character Recognition |
|
|
98 | (3) |
|
|
101 | (1) |
|
|
101 | (3) |
|
|
102 | (2) |
|
4 Applications of Parallelism by Task |
|
|
104 | (33) |
|
|
104 | (1) |
|
|
105 | (30) |
|
4.2.1 Document Understanding |
|
|
112 | (6) |
|
4.2.2 Image Understanding |
|
|
118 | (8) |
|
|
126 | (5) |
|
|
131 | (4) |
|
|
135 | (2) |
|
|
136 | (1) |
|
5 Application of Parallelism by Component |
|
|
137 | (38) |
|
|
137 | (1) |
|
|
138 | (34) |
|
5.2.1 Document Understanding |
|
|
138 | (14) |
|
5.2.2 Image Understanding |
|
|
152 | (10) |
|
|
162 | (8) |
|
|
170 | (2) |
|
|
172 | (3) |
|
|
173 | (2) |
|
6 Introduction to Meta-algorithmics |
|
|
175 | (66) |
|
|
175 | (3) |
|
6.2 First-Order Meta-algorithmics |
|
|
178 | (17) |
|
|
178 | (3) |
|
6.2.2 Constrained Substitute |
|
|
181 | (3) |
|
6.2.3 Voting and Weighted Voting |
|
|
184 | (5) |
|
6.2.4 Predictive Selection |
|
|
189 | (3) |
|
6.2.5 Tessellation and Recombination |
|
|
192 | (3) |
|
6.3 Second-Order Meta-algorithmics |
|
|
195 | (23) |
|
6.3.1 Confusion Matrix and Weighted Confusion Matrix |
|
|
195 | (4) |
|
6.3.2 Confusion Matrix with Output Space Transformation (Probability Space Transformation) |
|
|
199 | (4) |
|
6.3.3 Tessellation and Recombination with Expert Decisioner |
|
|
203 | (3) |
|
6.3.4 Predictive Selection with Secondary Engines |
|
|
206 | (2) |
|
6.3.5 Single Engine with Required Precision |
|
|
208 | (1) |
|
6.3.6 Majority Voting or Weighted Confusion Matrix |
|
|
209 | (1) |
|
6.3.7 Majority Voting or Best Engine |
|
|
210 | (2) |
|
6.3.8 Best Engine with Differential Confidence or Second Best Engine |
|
|
212 | (5) |
|
6.3.9 Best Engine with Absolute Confidence or Weighted Confusion Matrix |
|
|
217 | (1) |
|
6.4 Third-Order Meta-algorithmics |
|
|
218 | (22) |
|
|
219 | (2) |
|
6.4.2 Proof by Task Completion |
|
|
221 | (3) |
|
6.4.3 Confusion Matrix for Feedback |
|
|
224 | (4) |
|
|
228 | (4) |
|
6.4.5 Sensitivity Analysis |
|
|
232 | (4) |
|
6.4.6 Regional Optimization (Extended Predictive Selection) |
|
|
236 | (3) |
|
6.4.7 Generalized Hybridization |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
7 First-Order Meta-algorithmics and Their Applications |
|
|
241 | (31) |
|
|
241 | (1) |
|
7.2 First-Order Meta-algorithmics and the "Black Box" |
|
|
241 | (1) |
|
|
242 | (15) |
|
7.3.1 Document Understanding |
|
|
242 | (4) |
|
7.3.2 Image Understanding |
|
|
246 | (6) |
|
|
252 | (4) |
|
|
256 | (1) |
|
|
257 | (14) |
|
7.4.1 Medical Signal Processing |
|
|
258 | (6) |
|
|
264 | (4) |
|
7.4.3 Natural Language Processing |
|
|
268 | (3) |
|
|
271 | (1) |
|
|
271 | (1) |
|
8 Second-Order Meta-algorithmics and Their Applications |
|
|
272 | (38) |
|
|
272 | (1) |
|
8.2 Second-Order Meta-algorithmics and Targeting the "Fringes" |
|
|
273 | (6) |
|
|
279 | (25) |
|
8.3.1 Document Understanding |
|
|
280 | (13) |
|
8.3.2 Image Understanding |
|
|
293 | (4) |
|
|
297 | (2) |
|
|
299 | (5) |
|
|
304 | (4) |
|
|
305 | (2) |
|
|
307 | (1) |
|
|
308 | (2) |
|
|
308 | (2) |
|
9 Third-Order Meta-algorithmics and Their Applications |
|
|
310 | (32) |
|
|
310 | (1) |
|
9.2 Third-Order Meta-algorithmic Patterns |
|
|
311 | (2) |
|
|
311 | (1) |
|
9.2.2 Training-Gap-Targeted Feedback |
|
|
311 | (2) |
|
|
313 | (15) |
|
9.3.1 Document Understanding |
|
|
313 | (2) |
|
9.3.2 Image Understanding |
|
|
315 | (3) |
|
|
318 | (5) |
|
|
323 | (5) |
|
|
328 | (12) |
|
|
328 | (6) |
|
9.4.2 Optical Character Recognition |
|
|
334 | (3) |
|
|
337 | (3) |
|
|
340 | (2) |
|
|
341 | (1) |
|
10 Building More Robust Systems |
|
|
342 | (18) |
|
|
342 | (1) |
|
|
342 | (8) |
|
10.2.1 Ground Truthing for Meta-algorithmics |
|
|
342 | (5) |
|
10.2.2 Meta-algorithmics for Keyword Generation |
|
|
347 | (3) |
|
|
350 | (3) |
|
|
353 | (2) |
|
|
355 | (1) |
|
|
356 | (2) |
|
|
358 | (2) |
|
|
359 | (1) |
|
|
360 | (9) |
|
|
360 | (2) |
|
11.2 The Pattern of All Patience |
|
|
362 | (3) |
|
|
365 | (2) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
368 | (1) |
Index |
|
369 | |