Atjaunināt sīkdatņu piekrišanu

Meta-attributes and Artificial Networking: A New Tool for Seismic Interpretation [Hardback]

(CSIR-National Geophysical Research Group, Hyderabad, India), (CSIR-National Geophysical Research Group, Hyderabad, India)
  • Formāts: Hardback, 288 pages, height x width x depth: 229x152x18 mm, weight: 567 g
  • Sērija : Special Publications
  • Izdošanas datums: 08-Jul-2022
  • Izdevniecība: American Geophysical Union
  • ISBN-10: 1119482003
  • ISBN-13: 9781119482000
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 165,25 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 288 pages, height x width x depth: 229x152x18 mm, weight: 567 g
  • Sērija : Special Publications
  • Izdošanas datums: 08-Jul-2022
  • Izdevniecība: American Geophysical Union
  • ISBN-10: 1119482003
  • ISBN-13: 9781119482000
Citas grāmatas par šo tēmu:
"Overview of meta-attributes and how to design them. Case studies demonstrating the application of meta-attributes. Sample data sets available for hands-on exercises. The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals"--

Applying machine learning to the interpretation of seismic data

Seismic data gathered on the surface can be used to generate numerous seismic attributes that enable better understanding of subsurface geological structures and stratigraphic features. With an ever-increasing volume of seismic data available, machine learning augments faster data processing and interpretation of complex subsurface geology.

Meta-Attributes and Artificial Networking: A New Tool for Seismic Interpretation explores how artificial neural networks can be used for the automatic interpretation of 2D and 3D seismic data.

Volume highlights include:

  • Historic evolution of seismic attributes
  • Overview of meta-attributes and how to design them
  • Workflows for the computation of meta-attributes from seismic data
  • Case studies demonstrating the application of meta-attributes
  • Sets of exercises with solutions provided
  • Sample data sets available for hands-on exercises

The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Preface vii
About the Authors xi
Acronyms xiii
List of Symbols and Operators
xvii
Glossary xix
Additional Resources xxiii
Part I Seismic Attributes
1(58)
1 An Overview of Seismic Attributes
3(14)
2 Complex Trace, Structural, and Stratigraphic Attributes
17(34)
3 Be an Interpreter
51(8)
Part II Meta-Attributes
59(52)
4 An Overview of Meta-Attributes
61(12)
5 An Overview of Artificial Neural Networks
73(22)
6 How to Design Meta-Attributes
95(16)
Part III Case Studies Using Meta-Attributes
111(136)
7 Chimney Interpretation
113(20)
8 Fault Interpretation
133(18)
9 Fault and Fluid Migration Interpretation
151(18)
10 Magmatic Sill Interpretation (Part 1: Taranaki Basin Example)
169(16)
11 Magmatic Sill Interpretation (Part 2: Voring Basin Example)
185(10)
12 Magmatic Sill and Fluid Plumbing Interpretation (Canterbury Basin Example)
195(16)
13 Volcanic System Interpretation
211(24)
14 Interpretation of Mass Transport Deposits
235(12)
Appendix A Mathematical Formulation of Some Series and Transformation 247(4)
Appendix B Dip-steering 251(2)
Appendix C Solutions to Tasks in
Chapter 3
253(6)
Index 259
Kalachand Sain, Wadia Institute of Himalayan Geology, India

Priyadarshi Chinmoy Kumar, Wadia Institute of Himalayan Geology, India