Preface |
|
v | |
Introduction |
|
1 | (16) |
|
Chapter One Projective modules and class groups |
|
|
17 | (26) |
|
§1 Exact sequences and projective modules |
|
|
17 | (4) |
|
§2 The Grothendieck group of a ring |
|
|
21 | (2) |
|
§3 The reduced Grothendieck group |
|
|
23 | (1) |
|
§4 Projective modules over R{G) |
|
|
24 | (4) |
|
|
28 | (2) |
|
§6 Artinian rings are weakly Euclidean |
|
|
30 | (2) |
|
§7 Milnor's fibre square description of projective modules |
|
|
32 | (5) |
|
§8 The Milnor exact sequence |
|
|
37 | (2) |
|
§9 Projective modules over Z[ CP] |
|
|
39 | (4) |
|
Chapter Two Homological algebra |
|
|
43 | (26) |
|
§10 Cochain complexes and cohomology |
|
|
43 | (3) |
|
§11 The cohomology theory of modules |
|
|
46 | (2) |
|
§12 The exact sequences in cohomology |
|
|
48 | (5) |
|
|
53 | (3) |
|
§14 The group structure on Ext1 |
|
|
56 | (2) |
|
§15 The cohomological interpretation of Ext1 |
|
|
58 | (7) |
|
§16 The exact sequences of Ext1 |
|
|
65 | (1) |
|
§17 Example, the cyclic group of order m |
|
|
66 | (3) |
|
Chapter Three The derived module category |
|
|
69 | (24) |
|
§18 The derived module category |
|
|
70 | (5) |
|
§19 Stable equivalence and projective equivalence |
|
|
75 | (2) |
|
§20 Syzygies and generalized syzygies |
|
|
77 | (3) |
|
§21 The corepresentation theorem for Ext1 |
|
|
80 | (5) |
|
|
85 | (3) |
|
§23 The dual to Schanuel's Lemma |
|
|
88 | (1) |
|
|
89 | (4) |
|
Chapter Four Extension and restriction of scalars |
|
|
93 | (26) |
|
§25 Extension and restriction of scalars |
|
|
93 | (3) |
|
§26 Transversals and cocycles |
|
|
96 | (2) |
|
§27 Wreath products and group extensions |
|
|
98 | (2) |
|
§28 Induced representations |
|
|
100 | (1) |
|
§29 Lattices and representations |
|
|
101 | (2) |
|
|
103 | (4) |
|
|
107 | (2) |
|
§32 The Eckmann-Shapiro Theorem |
|
|
109 | (2) |
|
§33 Syzygies and lattices |
|
|
111 | (2) |
|
§34 The Eckmann-Shapiro relations in cohomology |
|
|
113 | (2) |
|
§35 Frobenius reciprocity |
|
|
115 | (4) |
|
Chapter Five Swan homomorphisms |
|
|
119 | (36) |
|
§36 Swan's projectivity criterion |
|
|
119 | (3) |
|
|
122 | (4) |
|
§38 The Swan homomorphism |
|
|
126 | (4) |
|
§39 Invariance properties of the Swan homomorphism |
|
|
130 | (1) |
|
§40 The relation between consecutive Swan homomorphisms |
|
|
131 | (4) |
|
§41 The dual Swan mapping |
|
|
135 | (5) |
|
§42 The stability group of a lattice |
|
|
140 | (5) |
|
§43 A criterion for monogenicity |
|
|
145 | (2) |
|
§44 Swan homomorphisms in their original context |
|
|
147 | (1) |
|
§45 The Swan homomorphism for cyclic groups |
|
|
148 | (3) |
|
§46 Cancellation over Z[ Cm] |
|
|
151 | (4) |
|
Chapter Six Modules over quasi-triangular algebras |
|
|
155 | (18) |
|
|
155 | (2) |
|
§48 Stable classification of projective modules over Tq(A, I) |
|
|
157 | (3) |
|
|
160 | (4) |
|
|
164 | (1) |
|
§51 Classification of projective modules over Tq(A, π) |
|
|
165 | (3) |
|
§52 Properties of the row modules R(i) |
|
|
168 | (2) |
|
§53 Duality properties of the modules R(i) |
|
|
170 | (3) |
|
Chapter Seven A fibre product decomposition |
|
|
173 | (32) |
|
§54 A fibre product decomposition |
|
|
173 | (2) |
|
§55 The discriminant of an associative algebra |
|
|
175 | (2) |
|
§56 The discriminant of a cyclic algebra |
|
|
177 | (3) |
|
§57 The discriminant of a quasi-triangular algebra |
|
|
180 | (2) |
|
§58 A quasi-triangular representation of G(p, q) |
|
|
182 | (4) |
|
§59 The isomorphism Cq(I*, θ) ~= Tq(A, π) |
|
|
186 | (2) |
|
|
188 | (4) |
|
§61 Lifting units to cyclotomic rings |
|
|
192 | (2) |
|
§62 Liftable subgroups of {F*p ×...&time; F*p}q |
|
|
194 | (8) |
|
|
202 | (3) |
|
Chapter Eight Galois modules |
|
|
205 | (16) |
|
|
205 | (4) |
|
§65 The Galois action of y |
|
|
209 | (2) |
|
§66 R(1) and R(q) as Galois modules |
|
|
211 | (1) |
|
§67 The theorem of Auslander-Rim |
|
|
212 | (3) |
|
§68 Galois module description of the row modules |
|
|
215 | (6) |
|
Chapter Nine The sequencing theorem |
|
|
221 | (18) |
|
|
221 | (3) |
|
§70 Cohomological calculations |
|
|
224 | (5) |
|
§71 Decomposing the augmentation ideal of A |
|
|
229 | (1) |
|
|
230 | (2) |
|
§73 The derived sequences |
|
|
232 | (2) |
|
§74 Computing the sequencing permutation |
|
|
234 | (3) |
|
§75 An element of D2fe+i(Z) |
|
|
237 | (2) |
|
Chapter Ten A cancellation theorem for extensions |
|
|
239 | (14) |
|
|
239 | (6) |
|
§77 A strong cancellation semigroup |
|
|
245 | (3) |
|
§78 A-D-modules for metacyclic groups |
|
|
248 | (1) |
|
§79 A cancellation theorem for extensions |
|
|
249 | (4) |
|
Chapter Eleven Cancellation of quasi-Swan modules |
|
|
253 | (24) |
|
§80 The Endper(K)-module structure on Ext1 (Q,K) |
|
|
253 | (3) |
|
§81 Nondegenerate modules of type R-Z[ C,q] |
|
|
256 | (4) |
|
§82 Nondegenerate modules of type R-IQ |
|
|
260 | (1) |
|
|
261 | (5) |
|
§84 An isomorphism theorem |
|
|
266 | (3) |
|
§85 Rearranging the extension parameters |
|
|
269 | (3) |
|
|
272 | (2) |
|
§87 Straightness of degenerate modules |
|
|
274 | (3) |
|
Chapter Twelve Swan homomorphisms for metacyclic groups |
|
|
277 | (22) |
|
|
278 | (3) |
|
|
281 | (1) |
|
§90 The identity Im(SR(K)) = Im(Stq) |
|
|
282 | (3) |
|
|
285 | (1) |
|
§92 The first modification |
|
|
286 | (2) |
|
§93 The second modification |
|
|
288 | (2) |
|
|
290 | (1) |
|
§95 Changing rings from Z[ Cq] to Z[ G(p,q)] |
|
|
291 | (2) |
|
|
293 | (2) |
|
§97 Fullness of R(k) + [ y - 1) |
|
|
295 | (4) |
|
Chapter Thirteen An obstruction to monogenicity |
|
|
299 | (16) |
|
§98 Obstructions to strong monogenicity |
|
|
299 | (2) |
|
§99 The unit group of Z[ y]/(y6 - 1) |
|
|
301 | (2) |
|
§100 The unit group of F2[ C6] |
|
|
303 | (1) |
|
§101 Projective modules over Z[ C12] |
|
|
304 | (3) |
|
§102 R(l) is not strongly monogenic over Z[ G(13,12)] |
|
|
307 | (8) |
|
Chapter Fourteen The D(2) property |
|
|
315 | (12) |
|
|
315 | (1) |
|
|
316 | (5) |
|
§105 Proof of Theorems VI, VII and VIII |
|
|
321 | (1) |
|
§106 The hypotheses K0(Z[ Cq]) = 0 and Inj(p,q) |
|
|
322 | (5) |
Appendix A Examples |
|
327 | (10) |
Appendix B Class field theory and condition Inj(p, q) |
|
337 | (6) |
Appendix C A sufficient condition for the D(2) property |
|
343 | (8) |
References |
|
351 | (4) |
Index |
|
355 | |