Atjaunināt sīkdatņu piekrišanu

Metaheuristic Computation: A Performance Perspective 2021 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 269 pages, height x width: 235x155 mm, weight: 438 g, 31 Illustrations, color; 62 Illustrations, black and white; XIV, 269 p. 93 illus., 31 illus. in color., 1 Paperback / softback
  • Sērija : Intelligent Systems Reference Library 195
  • Izdošanas datums: 07-Oct-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030581020
  • ISBN-13: 9783030581022
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 269 pages, height x width: 235x155 mm, weight: 438 g, 31 Illustrations, color; 62 Illustrations, black and white; XIV, 269 p. 93 illus., 31 illus. in color., 1 Paperback / softback
  • Sērija : Intelligent Systems Reference Library 195
  • Izdošanas datums: 07-Oct-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030581020
  • ISBN-13: 9783030581022
Citas grāmatas par šo tēmu:

This book is primarily intended for undergraduate and postgraduate students of Science, Electrical Engineering, or Computational Mathematics. Metaheuristic search methods are so numerous and varied in terms of design and potential applications; however, for such an abundant family of optimization techniques, there seems to be a question which needs to be answered: Which part of the design in a metaheuristic algorithm contributes more to its better performance? Several works that compare the performance among metaheuristic approaches have been reported in the literature. Nevertheless, they suffer from one of the following limitations: (A)Their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments.  (B) Their conclusions consider only the comparison of their final results which cannot evaluate the nature of a good or bad balance between exploration and exploitation. The objective of this book is to compare the performance of various metaheuristic techniques when they are faced with complex optimization problems extracted from different engineering domains. The material has been compiled from a teaching perspective.

Introductory concepts of metaheuristic computation.- Introductory
concepts of metaheuristiccomputation.- A metaheuristic methodology based on
fuzzy logic principles.