Atjaunināt sīkdatņu piekrišanu

Metal Cutting Theory and Practice 3rd edition [Hardback]

(General Motors, Pontiac, Michigan, USA), (Ford Motor Company, Michigan, USA)
  • Formāts: Hardback, 972 pages, height x width: 254x178 mm, weight: 1660 g, 81 Tables, black and white; 732 Illustrations, black and white
  • Izdošanas datums: 24-Mar-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1466587539
  • ISBN-13: 9781466587533
  • Hardback
  • Cena: 327,81 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 972 pages, height x width: 254x178 mm, weight: 1660 g, 81 Tables, black and white; 732 Illustrations, black and white
  • Izdošanas datums: 24-Mar-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1466587539
  • ISBN-13: 9781466587533
A Complete Reference Covering the Latest Technology in Metal Cutting Tools, Processes, and Equipment

Metal Cutting Theory and Practice, Third Edition shapes the future of material removal in new and lasting ways. Centered on metallic work materials and traditional chip-forming cutting methods, the book provides a physical understanding of conventional and high-speed machining processes applied to metallic work pieces, and serves as a basis for effective process design and troubleshooting. This latest edition of a well-known reference highlights recent developments, covers the latest research results, and reflects current areas of emphasis in industrial practice. Based on the authors extensive automotive production experience, it covers several structural changes, and includes an extensive review of computer aided engineering (CAE) methods for process analysis and design. Providing updated material throughout, it offers insight and understanding to engineers looking to design, operate, troubleshoot, and improve high quality, cost effective metal cutting operations.

The book contains extensive up-to-date references to both scientific and trade literature, and provides a description of error mapping and compensation strategies for CNC machines based on recently issued international standards, and includes chapters on cutting fluids and gear machining. The authors also offer updated information on tooling grades and practices for machining compacted graphite iron, nickel alloys, and other hard-to-machine materials, as well as a full description of minimum quantity lubrication systems, tooling, and processing practices. In addition, updated topics include machine tool types and structures, cutting tool materials and coatings, cutting mechanics and temperatures, process simulation and analysis, and tool wear from both chemical and mechanical viewpoints.

Comprised of 17 chapters, this detailed study:











Describes the common machining operations used to produce specific shapes or surface characteristics Contains conventional and advanced cutting tool technologies Explains the properties and characteristics of tools which influence tool design or selection Clarifies the physical mechanisms which lead to tool failure and identifies general strategies for reducing failure rates and increasing tool life Includes common machinability criteria, tests, and indices Breaks down the economics of machining operations Offers an overview of the engineering aspects of MQL machining Summarizes gear machining and finishing methods for common gear types, and more







Metal Cutting Theory and Practice, Third Edition

emphasizes the physical understanding and analysis for robust process design, troubleshooting, and improvement, and aids manufacturing engineering professionals, and engineering students in manufacturing engineering and machining processes programs.

Recenzijas

"This book covers the most important aspects about machining with grinding wheels and is an ideal handbook not only for beginners but also professionals in this area." Professor from Saint Louis University, Missouri, USA

Preface to the Third Edition xv
Preface to the Second Edition xvii
Preface to the First Edition xix
Authors xxi
Chapter 1 Introduction 1(26)
1.1 Scope of the Subject
1(1)
1.2 Historical Development
1(21)
1.2.1 Ancient and Medieval Predecessors
1(3)
1.2.2 Canon Boring
4(3)
1.2.3 The Industrial Revolution and the Steam Engine
7(3)
1.2.4 Nineteenth-Century Quantity Production Industries
10(5)
1.2.5 Early Scientific Studies
15(2)
1.2.6 Twentieth-Century Mass Production
17(3)
1.2.7 Numerical Control
20(2)
References
22(5)
Chapter 2 Metal-Cutting Operations 27(56)
2.1 Introduction
27(1)
2.2 Turning
27(3)
2.2.1 Hard Turning
29(1)
2.3 Boring
30(1)
2.4 Drilling
31(6)
2.4.1 Deep-Hole Drilling
34(3)
2.4.2 Microdrilling
37(1)
2.5 Reaming
37(1)
2.6 Milling
37(7)
2.7 Planing and Shaping
44(1)
2.8 Broaching
45(1)
2.9 Tapping and Threading
46(10)
2.10 Grinding and Related Abrasive Processes
56(8)
2.11 Roller Burnishing
64(1)
2.12 Deburring
65(1)
2.13 Examples
66(12)
2.14 Problems
78(2)
References
80(3)
Chapter 3 Machine Tools 83(76)
3.1 Introduction
83(1)
3.2 Production Machine Tools
83(5)
3.3 CNC Machine Tools and CNC-Based Manufacturing Systems
88(20)
3.3.1 General
88(1)
3.3.2 Types of CNC Machines
89(10)
3.3.3 CNC-Based Manufacturing Systems
99(9)
3.4 Machine Tool Structures
108(11)
3.5 Slides and Guideways
119(3)
3.6 Axis Drives
122(5)
3.7 Spindles
127(14)
3.8 Coolant Systems
141(1)
3.9 Tool Changing Systems
142(3)
3.10 Pallets
145(1)
3.11 Energy Use in CNC-Machining Centers
146(1)
3.12 Examples
147(3)
References
150(9)
Chapter 4 Cutting Tools 159(122)
4.1 Introduction
159(1)
4.2 Cutting-Tool Materials
159(13)
4.2.1 Introduction
159(1)
4.2.2 Material Properties
159(13)
4.2.2.1 High-Speed Steel (HSS) and Related Materials
163(1)
4.2.2.2 Sintered Tungsten Carbide (WC)
164(2)
4.2.2.3 Cermets
166(1)
4.2.2.4 Ceramics
167(2)
4.2.2.5 Polycrystalline Tools
169(1)
4.2.2.6 Polycrystalline Cubic Boron Nitride (PCBN)
170(1)
4.2.2.7 Polycrystalline Diamond (PCD)
171(1)
4.3 Tool Coatings
172(6)
4.3.1 Coating Methods
172(2)
4.3.2 Conventional Coating Materials
174(3)
4.3.3 Diamond and CBN Coatings
177(1)
4.4 Basic Types of Cutting Tools
178(1)
4.5 Turning Tools
179(11)
4.5.1 Indexable Inserts
179(4)
4.5.2 Groove Geometry (Chip Breaker)
183(1)
4.5.3 Edge Preparations
183(2)
4.5.4 Wiper Geometry
185(1)
4.5.5 Insert Clamping Methods
185(1)
4.5.6 Tool Angles
186(1)
4.5.7 Thread Turning Tools
187(1)
4.5.8 Grooving and Cutoff Tools
188(1)
4.5.9 Form Tools
189(1)
4.6 Boring Tools
190(6)
4.6.1 Single Point Boring Tools
190(6)
4.6.2 Multipoint Boring Tools
196(1)
4.7 Milling Tools
196(13)
4.7.1 Types of Milling Cutters
197(3)
4.7.2 Cutter Design
200(8)
4.7.3 Milling Inserts and Edge Clamping Methods
208(1)
4.8 Drilling Tools
209(33)
4.8.1 Twist Drill Structural Properties
211(3)
4.8.2 Twist Drill Point Geometries
214(9)
4.8.3 Spade and Indexable Drills
223(4)
4.8.4 Subland and Step Drills
227(1)
4.8.5 Multi-Tip (Deep Hole) Drills
228(5)
4.8.6 Other Types of Drills
233(1)
4.8.7 Chip Removal
234(3)
4.8.8 Drill Life and Accuracy
237(2)
4.8.9 Hole Deburring Tools
239(3)
4.9 Reamers
242(4)
4.9.1 Types of Reamers
243(1)
4.9.2 Reamer Geometry
244(2)
4.10 Threading Tools
246(9)
4.10.1 Taps
246(7)
4.10.2 Thread Mills
253(2)
4.11 Grinding Wheels
255(5)
4.11.1 Abrasives
255(2)
4.11.2 Bonds
257(1)
4.11.3 Wheel Grades and Grit Sizes
257(2)
4.11.4 Operational Factors
259(1)
4.12 Microsizing and Honing Tools
260(3)
4.13 Burnishing Tools
263(1)
4.14 Examples
263(11)
4.15 Problems
274(1)
References
275(6)
Chapter 5 Toolholders and Workholders 281(112)
5.1 Introduction
281(1)
5.2 Toolholding Systems
281(9)
5.2.1 General
281(3)
5.2.2 Modular and Quick-Change Toolholding Systems
284(6)
5.3 Toolholder/Spindle Connections
290(38)
5.3.1 General
290(5)
5.3.2 Conventional Tapered "CAT-V" Connection
295(8)
5.3.3 Face-Contact CAT-V Interfaces
303(6)
5.3.4 HSK Interface
309(5)
5.3.5 Proprietary Interfaces
314(2)
5.3.6 Quick-Change Interfaces (Toolholders/Adapters)
316(6)
5.3.7 Toolholders for Turning Machines
322(1)
5.3.8 Evaluation and Comparison of Toolholder/Spindle Interface
323(5)
5.4 Cutting Tool Clamping Systems
328(30)
5.4.1 Milling Cutter Drives
328(2)
5.4.2 Side-Lock-Type Chucks
330(1)
5.4.3 Collet Chucks
331(5)
5.4.4 Hydraulic Chucks
336(2)
5.4.5 Milling Chucks
338(1)
5.4.6 Shrink-Fit Chucks
339(2)
5.4.7 Proprietary Chucks
341(3)
5.4.8 Tapping Attachments
344(1)
5.4.9 Reaming Attachments
345(1)
5.4.10 Comparison of Cutting Tool Clamping Systems
345(13)
5.5 Balancing Requirements for Toolholders
358(4)
5.6 Fixtures
362(11)
5.6.1 General
362(2)
5.6.2 Types of Fixtures
364(6)
5.6.3 Fixture Analysis
370(3)
5.7 Examples
373(14)
5.8 Problems
387(1)
References
387(6)
Chapter 6 Mechanics of Cutting 393(56)
6.1 Introduction
393(1)
6.2 Measurement of Cutting Forces and Chip Thickness
393(2)
6.3 Force Components
395(6)
6.4 Empirical Force Models
401(1)
6.5 Specific Cutting Power
402(2)
6.6 Chip Formation and Primary Plastic Deformation
404(8)
6.7 Tool-Chip Friction and Secondary Deformation
412(4)
6.8 Shear Plane and Slip-Line Theories for Continuous Chip Formation
416(4)
6.9 Shear Plane Models for Oblique Cutting
420(2)
6.10 Shear Zone Models
422(3)
6.11 Minimum Work and Uniqueness Assumptions
425(1)
6.12 Finite Element Models
426(5)
6.13 Discontinuous Chip Formation
431(3)
6.14 Built-Up Edge Formation
434(2)
6.15 Examples
436(2)
6.16 Problems
438(1)
References
439(10)
Chapter 7 Cutting Temperatures 449(34)
7.1 Introduction
449(1)
7.2 Measurement of Cutting Temperatures
449(7)
7.2.1 Tool-Work Thermocouple Method and Related Techniques
449(4)
7.2.2 Conventional Thermocouple Methods
453(1)
7.2.3 Metallurgical Methods
454(1)
7.2.4 Infrared Methods
454(2)
7.2.5 Other Methods
456(1)
7.3 Factors Affecting Cutting Temperatures
456(1)
7.4 Analytical Models for Steady-State Temperatures
457(6)
7.5 Finite Element and Other Numerical Models
463(4)
7.6 Temperatures in Interrupted Cutting
467(2)
7.7 Temperatures in Drilling
469(2)
7.8 Thermal Expansion
471(1)
7.9 Examples
472(4)
7.10 Problem
476(1)
References
476(7)
Chapter 8 Machining Process Analysis 483(46)
8.1 Introduction
483(1)
8.2 Turning
484(2)
8.3 Boring
486(1)
8.4 Milling
487(7)
8.4.1 Face Milling
489(1)
8.4.2 End Milling
490(4)
8.4.3 Ball End Milling
494(1)
8.5 Drilling
494(8)
8.6 Force Equations and Baseline Data
502(5)
8.7 Process Simulation Application Examples
507(5)
8.8 Finite Element Analysis for Clamping, Fixturing, and Workpiece Distortion Applications
512(2)
8.9 Finite Element Application Examples
514(5)
8.10 Examples
519(5)
8.11 Problems
524(1)
References
525(4)
Chapter 9 Tool Wear and Tool Life 529(46)
9.1 Introduction
529(1)
9.2 Types of Tool Wear
530(7)
9.3 Measurement of Tool Wear
537(1)
9.4 Tool Wear Mechanisms
538(3)
9.5 Tool Wear: Material Considerations
541(7)
9.6 Tool Life Testing
548(1)
9.7 Tool Life Equations
549(2)
9.8 Prediction of Tool Wear Rates
551(3)
9.9 Tool Fracture and Edge Chipping
554(2)
9.10 Drill Wear and Breakage
556(4)
9.11 Thermal Cracking and Tool Fracture in Milling
560(1)
9.12 Tool Wear Monitoring
561(1)
9.13 Examples
562(6)
9.14 Problems
568(1)
References
569(6)
Chapter 10 Surface Finish, Integrity, and Flatness 575(48)
10.1 Introduction
575(1)
10.2 Measurement of Surface Finish
576(6)
10.2.1 Stylus Measurements
576(5)
10.2.2 Other Methods
581(1)
10.3 Surface Finish in Turning and Boring
582(4)
10.4 Surface Finish in Milling
586(4)
10.5 Surface Finish in Drilling and Reaming
590(1)
10.6 Surface Finish in Grinding
590(2)
10.7 Residual Stresses in Machined Surfaces
592(2)
10.8 White Layer Formation
594(1)
10.9 Surface Burning in Grinding
595(2)
10.10 Measurement of Surface Flatness
597(2)
10.11 Surface Flatness Compensation in Face Milling
599(10)
10.11.1 Tool Path Direction Compensation
600(3)
10.11.2 Depth of Cut Compensation
603(2)
10.11.3 Tool Feed Compensation
605(1)
10.11.4 Spindle-Part Tilt Compensation
606(2)
10.11.5 Surface Flatness Compensation Methods Characteristics
608(1)
10.12 Examples
609(9)
10.13 Problems
618(1)
References
618(5)
Chapter 11 Machinability of Materials 623(42)
11.1 Introduction
623(1)
11.2 Machinability Criteria, Tests, and Indices
623(4)
11.3 Chip Control
627(6)
11.4 Burr Formation and Control
633(5)
11.5 Machinability of Engineering Materials
638(19)
11.5.1 Magnesium Alloys
638(2)
11.5.2 Aluminum Alloys
640(2)
11.5.3 Metal Matrix Composites
642(1)
11.5.4 Copper Alloys
643(1)
11.5.5 Cast Iron
644(3)
11.5.6 Carbon and Low Alloy Steels
647(3)
11.5.7 Stainless Steels
650(2)
11.5.8 Powder Metal (P/M) Materials
652(1)
11.5.9 Titanium Alloys
653(1)
11.5.10 Nickel Alloys
654(2)
11.5.11 Depleted Uranium Alloys
656(1)
References
657(8)
Chapter 12 Machining Dynamics 665(86)
12.1 Introduction
665(1)
12.2 Vibration Analysis Methods
665(1)
12.3 Vibration of Discrete (Lumped Mass) Systems
666(12)
12.3.1 Single Degree-of-Freedom (SDOF) Systems
668(5)
12.3.2 Multiple Degree-of-Freedom (MDOF) Systems
673(5)
12.4 Types of Machine Tool Vibration
678(2)
12.5 Forced Vibration
680(3)
12.6 Self-Excited Vibrations (Chatter)
683(17)
12.6.1 Regenerative Chatter, Prediction of Stability Charts (Lobes)
684(3)
12.6.2 Tlusty's Theory
687(7)
12.6.3 Shear Plane Method
694(1)
12.6.4 Other Methods
695(3)
12.6.5 Nonregenerative Chatter, Mode Coupling
698(2)
12.7 Chatter Prediction
700(6)
12.7.1 Experimental Machine Tool Vibration Analysis
701(1)
12.7.2 Measurement of Transfer Functions
702(4)
12.8 Vibration Control
706(4)
12.8.1 Stiffness Improvement
706(1)
12.8.2 Isolation
707(1)
12.8.3 Damping and Dynamic Absorption
707(2)
12.8.4 Tool Design
709(1)
12.8.5 Variation of Process Parameters
709(1)
12.9 Active Vibration Control
710(6)
12.10 Examples
716(23)
12.11 Problems
739(4)
References
743(8)
Chapter 13 Machining Economics and Optimization 751(32)
13.1 Introduction
751(2)
13.2 Role of a Computerized Optimization System
753(2)
13.3 Economic Considerations
755(1)
13.4 Optimization of Machining Systems: Basic Factors
756(1)
13.5 Optimization of Machining Conditions
757(1)
13.6 Formulation of the Optimization Problem
758(6)
13.6.1 Formulation of Objective Function
758(3)
13.6.2 Constraints
761(2)
13.6.3 Problem Statement
763(1)
13.7 Optimization Techniques
764(4)
13.7.1 Single-Pass Operation
764(1)
13.7.2 Multipass Operation
764(1)
13.7.3 Single-Station Multifunctional System (SSMS)
765(1)
13.7.4 Multistage Machining System
765(1)
13.7.5 Cutting Tool Replacement Strategies
766(1)
13.7.6 Cutting Tool Strategies for Multifunctional Part Configurations
767(1)
13.8 Examples
768(8)
13.9 Problems
776(1)
References
777(6)
Chapter 14 Cutting Fluids 783(20)
14.1 Introduction
783(1)
14.2 Types of Cutting Fluids
784(4)
14.2.1 Neat Oils
784(1)
14.2.2 Water-Based Fluids
784(2)
14.2.3 Gaseous Fluids
786(1)
14.2.4 Air-Oil Mists (Aerosols)
787(1)
14.2.5 Cryogenic Fluids
788(1)
14.3 Coolant Application
788(1)
14.4 Filtering
789(5)
14.5 Condition Monitoring and Waste Treatment
794(1)
14.6 Health and Safety Concerns
795(2)
14.6.1 Toxicity
796(1)
14.6.2 Dermatitis
796(1)
14.6.3 Respiratory Disorders
796(1)
14.6.4 Microbial Infections
796(1)
14.6.5 Cancer
797(1)
14.7 Dry and Near-Dry Machining Methods
797(1)
14.8 Test Procedure for Cutting Fluid Evaluation
798(1)
References
798(5)
Chapter 15 Minimum Quantity Lubrication 803(24)
15.1 Introduction
803(1)
15.2 MQL System Types
803(6)
15.2.1 External and Internal Mist Delivery
804(1)
15.2.2 One- and Two-Channel MQL Systems
805(4)
15.3 MQL Oils
809(1)
15.4 Machine Tools for MQL
810(2)
15.5 MQL Cutting Tools
812(5)
15.6 Thermal Management and Dimensional Control
817(1)
15.7 Air and Chip Handling
818(1)
15.8 MQL Research Areas
819(3)
15.8.1 Hard Alloy Machining and Grinding
819(1)
15.8.2 Alternative Carrying Gases and Cooling Strategies
820(1)
15.8.3 MQL Process Modeling
820(1)
15.8.4 Oil Additives and Ionic Fluids
821(1)
References
822(5)
Chapter 16 Accuracy and Error Compensation of CNC Machining Systems 827(70)
16.1 Introduction
827(1)
16.2 Machine Tool Errors
828(9)
16.3 Machine Tool Accuracy Characterization
837(2)
16.4 Machine Tool Performance Evaluation
839(26)
16.5 Method for Compensating the Dimensional Accuracy of CNC Machining System
865(17)
16.5.1 Error Reduction and Compensation Strategies
865(7)
16.5.2 Error Modeling Methods
872(5)
16.5.3 Error Compensation Offset Methods
877(5)
16.6 Examples
882(7)
References
889(8)
Chapter 17 Gear Machining 897(36)
17.1 Introduction
897(1)
17.2 Gear Types and Geometry
897(3)
17.2.1 Gear Types
897(1)
17.2.2 Gear Geometry and Accuracy Classes
898(2)
17.3 Tooth Machining Methods for Parallel Axis Gears
900(9)
17.3.1 Broaching
901(3)
17.3.2 Form Milling
904(1)
17.3.3 Hobbing
905(2)
17.3.4 Shaping
907(2)
17.3.5 Form Grinding from the Solid
909(1)
17.4 Bevel and Hypoid Gear Machining
909(5)
17.4.1 Peripheral Milling
910(2)
17.4.2 Face Milling
912(1)
17.4.3 Face Hobbing
913(1)
17.5 Five-Axis Machining of Gears
914(3)
17.5.1 Parallel Axis Gears
915(1)
17.5.2 Bevel Gears
916(1)
17.6 Gear Tooth Finishing Methods
917(9)
17.6.1 Shaving
917(2)
17.6.2 Skiving (Hard Finishing)
919(1)
17.6.2.1 Skiving: Hard Recutting Processes
919(1)
17.6.2.2 Skiving: Other Processes
920(1)
17.6.3 Grinding
920(4)
17.6.3.1 Form Grinding
921(1)
17.6.3.2 Indexing Generating Grinding
922(1)
17.6.3.3 Continuous Generating Grinding
923(1)
17.6.4 Honing
924(1)
17.6.5 Lapping
925(1)
References
926(7)
Index 933
David A. Stephenson is a technical specialist at Ford Powertrain Advanced Manufacturing Engineering in Livonia, Michigan. Earlier, Stephenson worked for several years at General Motors Research and General Motors Powertrain; he has also worked at Third Wave Systems, Inc., D3 Vibrations, Inc., the University of Michigan, and Fusion Coolant Systems. He is a member of the American Society of Mechanical Engineers (ASME) and a Fellow of the Society of Manufacturing Engineers (SME). He has served as a journal technical editor for both societies, and served on the ASME Manufacturing Science and Engineering Division Executive Commitee from 2002 to 2007.

John S. Agapiou is a technical fellow at the Manufacturing Systems Research Lab at General Motors R&D Center, Warren, Michigan. He is also part time professor in the Department of Mechanical Engineering at Wayne State University. His research focus involves developing and implementing world-class manufacturing, quality, and process validation strategies in the production and development of the automotive Powertrain. He received his bachelors and masters degrees in mechanical engineering at the University of Louisville in 1980 and 1981, respectively, and his PhD from the University of Wisconsin in 1985.