Atjaunināt sīkdatņu piekrišanu

E-grāmata: Metamaterials for Perfect Absorption

  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented.

The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. 

Suitable for graduate students in optical sciences and electronic engineering, it will also serve as a valuable reference for active researchers in these fields.

1 Introduction
1(10)
References
5(6)
2 Theoretical Backgrounds
11(44)
2.1 Interaction of Electromagnetic Waves with Matter
11(9)
2.1.1 Boundary Conditions and Fresnel Equations
15(2)
2.1.2 Dispersion Relations
17(3)
2.2 Perfect Electromagnetic-Wave Absorbers
20(15)
2.2.1 Broadband Perfect Absorbers
20(7)
2.2.2 Resonant Perfect Absorbers
27(4)
2.2.3 Metamaterial-Based Perfect Absorbers
31(4)
2.3 Effective-Medium Approximation
35(4)
2.4 Equivalent-Circuit Theory and Transmission-Line Theory
39(6)
2.5 Numerical Techniques
45(10)
2.5.1 Finite-Difference Time-Domain Method
45(3)
2.5.2 Finite-Element Method
48(1)
2.5.3 Transfer-Matrix Method
49(3)
References
52(3)
3 MMPAs Operating in Different Frequency Ranges
55(44)
3.1 MMPAs Operating in the GHz Range
55(14)
3.2 MMPAs Operating in the THz Range
69(10)
3.3 MMPAs Operating in the Infrared and Optical Ranges
79(20)
References
96(3)
4 MMPA, Based on Electromagnetically-Induced Transparency
99(14)
4.1 Introduction
99(3)
4.2 Narrow Perfect Absorbers Based on Plasmonic Analog of Electromagnetically-Induced Absorption
102(4)
4.3 Broadband Perfect Absorbers Based on Asymmetry Resonators
106(4)
4.4 Summary
110(3)
References
111(2)
5 Broadband and Tunable MMPA
113(30)
References
140(3)
6 Polarization-Independent and Wide-Incident-Angle Metamaterial Perfect Absorber
143(26)
6.1 Introduction
143(1)
6.2 Dependence of Electromagnetic Polarization on Metamaterial Perfect Absorber
144(10)
6.3 Wide-Incident-Angle Metamaterial Perfect Absorber
154(11)
6.4 Summary
165(4)
References
165(4)
7 Perspectives
169(6)
References
172(3)
Index 175
Prof. YoungPak Lee is Distinguished Professor in Department of Physics in Hanyang University, Director in Quantum Photonic Science Research Center and Chairman in Committee for Basic Science Education in Academy of Science and Technology. His present research activity is; magnetic photo crystals and metamaterials and applications to renewable energy; magneto-optical, magnetic, optical and transport properties, and electronic structures of thin films and nano structures; nanoscopic investigation of morphology and magnetic domain; nonlinear and time-resolved magneto-optical spectroscopy; magnetic semiconductors based on oxides; analysis of magnetic surfaces and films by using synchrotron radiation; magnetic bio-systems; characterization of the surfaces and interfaces of thin films including multilayers. Prof. Lee was the President of Koran Physical Society and Korean Federation of Physics-related Societies. He published 642 SCI papers and h-index is 44.





Joo Yull Rhee received the B.S. degree from Seoul National University, Korea, in 1978, the M.S. degree from KAIST, Korea, in 1980, and the Ph.D. degree from Iowa State University, USA, in 1992, all in physics. He is a professor of Physics Department of Sungkyunkwan University, Korea. His current research interests include the optical properties of metamaterials and the electronic-structure calculations of mostly magnetic materials.  He has published over 170 scientific journal papers on the optical properties of metamaterials and the optical and magneto-optical properties of magnetic materials.Young Joon Yoo also investigates metamaterial absorbers and applications, and multiferroic flexible films as Researcher at Dept. Physics, Hanyang University, Seoul, Korea. He received a Ph.D. in Physics at Hanyang University, Seoul, Korea, in 2014. He worked as Associate Research Engineer at R&D Dept., Scinco Inc., Korea, from 2006 to 2010.

Ki Won Kim received his Ph.D. degree in Physics from Yonsei University, Seoul, Korea, in 1995. He is working as a professor at Department of Information Display, Sunmoon University, Asan, Korea, from 1996. He worked as the Editor-in-Chief of Journal of the Korean Vacuum Society during 2013-2014. His research interests include metamaterials working in the MHz to THz regime, magnetic and magneto-optical properties of thin films, and analysis of magnetic surface and thin films by using synchrotron radiation.