Atjaunināt sīkdatņu piekrišanu

E-grāmata: Meteorology of Tropical West Africa - The Forecasters' Handbook: The Forecasters' Handbook [Wiley Online]

  • Formāts: 496 pages
  • Izdošanas datums: 26-Apr-2017
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1118391292
  • ISBN-13: 9781118391297
Citas grāmatas par šo tēmu:
  • Wiley Online
  • Cena: 147,68 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 496 pages
  • Izdošanas datums: 26-Apr-2017
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1118391292
  • ISBN-13: 9781118391297
Citas grāmatas par šo tēmu:

Meteorology of tropical West Africa: the Forecasters’ Handbook presents the science and practice of weather forecasting for an important region of the tropics. Connecting basic theory with forecasting practice, the book provides a unique training volume for operational weather forecasters, and is also suitable for students of tropical meteorology.

The West African region contains a number of archetypal climatic zones, meaning that the science of its weather and climate applies to many other tropical regions. West Africa also exhibits some of the world’s most remarkable weather systems, making it an inspiring region for students to investigate.

The weather of West Africa affects human livelihoods on a daily basis, and can contribute to hardship, poverty and mortality. Therefore, the ability to understand and predict the weather has the potential to deliver significant benefits to both society and economies.

The book includes comprehensive background material alongside documentation of weather forecasting methods. Many examples taken from observations of West African weather systems are included and online case-studies are referenced widely.

Contributors xiii
Foreword xiv
Preface xv
Acknowledgements xvii
Acronyms xviii
1 Mean Climate and Seasonal Cycle 1(39)
1.1 Introduction
1(2)
1.2 Rainfall and Evaporation Climatologies
3(9)
1.3 Water Vapour and Clouds
12(2)
1.4 Radiation, Dust, Sunshine Duration, Vegetation and Soil Water
14(4)
1.5 Pressure, Temperature, Humidity and Wind at the Surface
18(4)
1.6 Upper Air Wind, Mass and Humidity Fields
22(11)
1.6.1 An Eulerian Perspective on the Wind, Circulation and Dynamics
22(7)
1.6.2 A Lagrangian Perspective on the Circulation
29(4)
1.7 Summary Schematics of the January and July West African Monsoon System
33(3)
Acknowledgements
36(1)
Appendix: Acronyms
37(1)
Notes
37(1)
References
38(2)
2 Synoptic Systems 40(50)
2.1 Scientific Background
40(31)
2.1.1 Introduction
40(1)
2.1.2 Continental-scale Synoptic Features
41(4)
2.1.2.1 Saharan Heat Low
41(2)
2.1.2.2 The Intertropical Discontinuity or Intertropical Front
43(1)
2.1.2.3 African Easterly Jet
44(1)
2.1.3 African Easterly Waves
45(17)
2.1.3.1 Background
45(1)
2.1.3.2 Observed Synoptic Structure of African Easterly Waves, Analyses and Statistical Composites
45(6)
2.1.3.3 African Easterly Wave Structure
51(4)
2.1.3.4 African Easterly Wave Genesis
55(1)
2.1.3.5 African Easterly Wave Dynamics and Evolution
56(3)
2.1.3.6 Relationship with Deep Convection
59(1)
2.1.3.7 Downstream Transformation
60(2)
2.1.4 Mid-latitude Troughs and Upper-level Troughs
62(3)
2.1.5 Extratropical Dry Air Intrusions
65(1)
2.1.6 Guinea Coast Systems
66(3)
2.1.6.1 Guinea Coast Cloud and Rainfall
66(2)
2.1.6.2 The Little Dry Season
68(1)
2.1.7 Synoptic-scale Land-surface Feedbacks
69(2)
2.2 Operational Methods and Canonical Synoptic Patterns
71(12)
2.2.1 Synoptic Fields and Main Inferences
71(1)
2.2.2 African Easterly Wave Case Studies and Canonical Structures
72(7)
2.2.2.1 An Archetypal African Easterly Wave Event: Case Study CS02, 12-16 August 2012
72(1)
2.2.2.2 African Easterly Wave Breaking Events
73(2)
2.2.2.3 Coastal Development of African Easterly Waves
75(4)
2.2.3 Dry-season Thunderstorms in West Africa
79(4)
Acknowledgements
83(1)
Appendix: Acronyms
83(1)
Notes
84(1)
References
84(6)
3 Deep Convection 90(40)
3.1 Scientific Background
90(25)
3.1.1 Introduction
90(4)
3.1.1.1 Is Convection Different over Africa?
91(1)
3.1.1.2 Interaction Between Convection and the Larger Scale Flow
92(2)
3.1.1.3 Aims of this
Chapter
94(1)
3.1.2 Processes and Factors Governing Convection
94(8)
3.1.2.1 Convective Updraughts
94(2)
3.1.2.2 Downdraughts, Downdraught Available Convective Potential Energy and Density Currents
96(4)
3.1.2.3 Wind Shear
100(1)
3.1.2.4 Discussion
100(2)
3.1.3 Organisation of Deep Convection
102(6)
3.1.3.1 Different Types of Organisation
102(2)
3.1.3.2 The Squall-line Conceptual Model
104(1)
3.1.3.3 Climatology and Classification of Mesoscale Convective Systems
105(3)
3.1.4 Life Cycle and Diurnal Cycle
108(7)
3.1.4.1 Triggering
108(5)
3.1.4.2 The Diurnal Cycle
113(1)
3.1.4.3 Dissipation
114(1)
3.2 Operational Methods
115(12)
3.2.1 Life Cycle of Convection on 12-16 August 2012 (CS02)
117(2)
3.2.1.1 MCS1
117(1)
3.2.1.2 MCS2
117(1)
3.2.1.3 MCS3
117(1)
3.2.1.4 CS1
117(2)
3.2.1.5 CS2
119(1)
3.2.1.6 Suppressed Convection
119(1)
3.2.2 A Cold Pool Case Study, 27 September 2014 (CS14)
119(3)
3.2.3 Forecasting Areas of Storm Initiation or Suppression
122(3)
3.2.3.1 Synoptic Conditions and Stability
122(3)
3.2.3.2 History of Recent Storms
125(1)
3.2.3.3 Use of Numerical Weather Prediction to Forecast Convective Initiation
125(1)
3.2.4 Forecasting Storm Types
125(1)
3.2.4.1 Organisation, Longevity, Speed and Direction
125(1)
3.2.4.2 Weather Phenomena
125(1)
3.2.5 Forecasting Suppression of Convection
126(1)
Acknowledgements
127(1)
Appendix: Acronyms
127(1)
Notes
127(1)
References
127(3)
4 Local Weather 130(45)
4.1 Scientific Background
130(30)
4.1.1 Introduction
130(1)
4.1.2 The Surface Energy Balance and the Atmospheric Surface Layer
131(7)
4.1.2.1 Surface Energy Balance Principles
131(3)
4.1.2.2 Surface-layer Winds
134(1)
4.1.2.3 The Surface Energy Balance over West African Climatic Zones
135(1)
4.1.2.4 Variation of Surface Energy Balance and Surface Temperatures in Response to Physical Processes
135(3)
4.1.3 Boundary Layer over West Africa: Diurnal Cycle
138(9)
4.1.3.1 Daytime Convective Boundary Layer
138(4)
4.1.3.2 Night-time Planetary Boundary Layer
142(4)
4.1.3.3 Fog Formation
146(1)
4.1.3.4 Marine Planetary Boundary Layer
147(1)
4.1.4 Local Winds: Mesoscale Variability and Circulations
147(10)
4.1.4.1 Coherent Structures in the Winds: Convergence Lines and Gravity Currents
148(3)
4.1.4.2 The Sea Breeze and the Land Breeze
151(3)
4.1.4.3 Topographically Forced Winds
154(1)
4.1.4.4 Local Winds and Convergence Associated with Soil Moisture and Vegetation Boundaries
155(1)
4.1.4.5 Trapped Waves, Bores and Solitary Waves
156(1)
4.1.5 Convective Rainfall Distribution on the Local Scale
157(3)
4.1.5.1 Cumulus Congestus Clouds
157(1)
4.1.5.2 Land Surface Controls on Rainfall: Soil Moisture and Vegetation
158(2)
4.1.6 Marine Weather
160(1)
4.2 Operational Methods
160(11)
4.2.1 Forecasting of Maximum and Minimum Temperatures (Tx, Tn)
160(4)
4.2.1.1 Statistically Based Forecasts
161(1)
4.2.1.2 Physical Methods Based on Sounding Data
162(2)
4.2.1.3 Integration with Numerical Weather Prediction Data
164(1)
4.2.1.4 Physical Processes Influencing Daily Temperatures
164(1)
4.2.2 Visibility
164(4)
4.2.2.1 Basic Principles of Visibility Forecasting
164(2)
4.2.2.2 Fog Forecasting
166(2)
4.2.3 Forecasting Wind Shear and Turbulence
168(1)
4.2.4 Forecasting Land, Sea and Lake Breezes
169(1)
4.2.5 Marine Forecasting
169(2)
4.2.5.1 Winds over the Sea
169(1)
4.2.5.2 Ocean Waves
169(1)
4.2.5.3 Visibility over the Sea
170(1)
4.2.6 Marine Services
171(4)
4.2.6.1 Forecasts/Warnings
171(1)
4.2.6.2 Routeing of Ships
171(1)
Acknowledgements
171(1)
Appendix: Acronyms
172(1)
Notes
172(1)
References
172(3)
5 Dust 175(29)
5.1 Scientific Background
175(13)
5.1.1 The Dust Cycle
175(4)
5.1.1.1 Emission
175(2)
5.1.1.2 Transport
177(1)
5.1.1.3 Wet and Dry Deposition
177(2)
5.1.2 Meteorological Systems
179(3)
5.1.3 Climatologies
182(2)
5.1.4 Interactions with Weather and Climate
184(4)
5.1.4.1 Direct Radiative Effect
184(1)
5.1.4.2 Impact on Atmospheric Stability
184(2)
5.1.4.3 Impact on Cloud Microphysics
186(1)
5.1.4.4 Fertilisations of Ecosystems by Dust
186(2)
5.2 Operational Methods
188(11)
5.2.1 Introduction and Structure
188(1)
5.2.2 Data
188(6)
5.2.2.1 Surface Station Data
188(1)
5.2.2.2 Surface and Pressure-level Charts
188(1)
5.2.2.3 Remote Sensing
188(3)
5.2.2.4 Numerical Model Predictions of Dust
191(3)
5.2.3 Practical Guidelines for Forecasters
194(5)
5.2.3.1 Introduction
194(1)
5.2.3.2 Forecasting Harmattan Dust Haze
194(4)
5.2.3.3 Forecasting Convective Dust Storms
198(1)
5.2.4 Case Study Examples Online
199(1)
Appendix: Acronyms
199(1)
Notes
200(1)
References
200(4)
6 Nowcasting 204(51)
6.1 Scientific Background
204(17)
6.1.1 Introduction
204(1)
6.1.2 Nowcast Process
205(16)
6.1.2.1 Convective Weather Outlook
205(1)
6.1.2.2 Conceptual Models and Climatology
206(3)
6.1.2.3 Stability Analyses
209(6)
6.1.2.4 Storm Type
215(1)
6.1.2.5 Extrapolation of Existing Storms
215(2)
6.1.2.6 Nowcasting Storm Initiation and Evolution
217(4)
6.2 Operational Methods for Nowcasting Severe Weather
221(29)
6.2.1 Thunderstorms, Hail and Flash Floods
224(1)
6.2.2 Procedure for Nowcasting Thunderstorms, Hail and Flash Floods
224(10)
6.2.3 Wind Shear
234(1)
6.2.4 Procedure for Nowcasting Wind Shear
235(11)
6.2.5 Lightning
246(2)
6.2.6 Procedure for Nowcasting Lightning
248(2)
Appendix A: Acronyms
250(1)
Appendix B: Checklist for Improving Operational Nowcasting Capability
250(1)
Appendix C
251(1)
Appendix D: Online Web Sites Containing Weather-related Training Materials
252(1)
Note
252(1)
References
252(3)
7 Subseasonal Forecasting 255(34)
7.1 Scientific Background
255(22)
7.1.1 Introduction
255(1)
7.1.2 Data
256(2)
7.1.2.1 Precipitation
256(1)
7.1.2.2 Sea Surface Temperature
256(2)
7.1.2.3 Outgoing Longwave Radiation
258(1)
7.1.2.4 Brightness Temperature
258(1)
7.1.2.5 Reanalysis
258(1)
7.1.3 Detection of the Main Modes of Subseasonal Variability of Convection
258(2)
7.1.4 Convectively Coupled Equatorial Waves
260(5)
7.1.4.1 Kelvin Waves
263(1)
7.1.4.2 Equatorial Rossby Waves
263(1)
7.1.4.3 Mixed Rossby-Gravity Waves
264(1)
7.1.5 Other Convectively Coupled Signals and Links with Equatorial Waves
265(7)
7.1.5.1 Signals Between 10 and 25 Days
265(4)
7.1.5.2 Periodicities Between 25 and 90 Days and the Madden-Julian Oscillation
269(3)
7.1.6 Mechanisms for Dry- and Wet-spell Frequency
272(3)
7.1.7 Onset of the Monsoon and Rainfall
275(2)
7.1.7.1 Detection
275(1)
7.1.7.2 Mechanisms
276(1)
7.1.7.3 Applications
276(1)
7.1.7.4 Summary and Outlook
277(1)
7.2 Operational Methods
277(8)
7.2.1 Prediction Tools
279(1)
7.2.1.1 Madden-Julian Oscillation Predictions
279(1)
7.2.1.2 Prediction of Regional Climate Anomalies
280(1)
7.2.2 Guidelines for Operational Forecasting
280(9)
7.2.2.1 State of the Madden-Julian Oscillation
280(3)
7.2.2.2 Consensus Outlooks
283(1)
7.2.2.3 Forecast Verifications
284(1)
Acknowledgements
285(1)
Appendix: Acronyms
285(1)
Note
285(1)
References
286(3)
8 Seasonal Forecasting 289(34)
8.1 Scientific Background
289(27)
8.1.1 Introduction
289(2)
8.1.2 Sea Surface Temperature Teleconnections
291(2)
8.1.3 Statistical Forecasts
293(12)
8.1.3.1 Methods
293(4)
8.1.3.2 Representation of Predictors: Sea Surface Temperature Empirical Orthogonal Function Predictors
297(3)
8.1.3.3 Representation of Predictands
300(3)
8.1.3.4 Assessment of Statistical Methods
303(1)
8.1.3.5 Performance over 1996-2009
304(1)
8.1.4 Dynamical Forecasts
305(6)
8.1.4.1 Performance over 1996-2009
305(1)
8.1.4.2 Correction of Systematic Errors in Models
306(3)
8.1.4.3 Future Models: Potential for Improving Seasonal Forecasts
309(2)
8.1.4.4 Long-lead Predictability
311(1)
8.1.5 Combined Forecasts
311(2)
8.1.5.1 Performance over 1996-2009
312(1)
8.1.6 Other Variables and Seasons
313(3)
8.1.6.1 Prediction of Outflow from Lake Volta
313(1)
8.1.6.2 Prediction of Meningococcal Meningitis in the West Africa Dry Season
313(3)
8.1.6.3 Applying Seasonal Forecasts to Assist Agriculture in Senegal
316(1)
8.2 Operational Methods
316(4)
8.2.1 International Seasonal Forecast web sites: Sources of Information
316(2)
8.2.1.1 World Meteorological Organization Lead Centre Multimodel Ensemble web site
316(1)
8.2.1.2 Long-range Forecast Verifications
317(1)
8.2.1.3 UK Met Office web site
317(1)
8.2.1.4 ECMWF/EUROSIP web site
317
8.2.1.5 NOAA/NCEP web site
315(2)
8.2.1.6 International Research Institute for Climate and Society Seasonal Forecast web site
317(1)
8.2.1.7 African Center of Meteorological Application for Development web site
318(1)
8.2.2 Consensus Forecasts
318(1)
8.2.2.1 The PRESAO Process
318(1)
8.2.2.2 Assessment of PRESAO Forecasts 1998-2007
318(1)
8.2.3 Software and Tools
318(1)
8.2.3.1 The Climate Predictability Tool
319(1)
8.2.3.2 International Research Institute for Climate and Society Data Library
319(1)
8.2.3.3 KNMI Climate Explorer
319(1)
8.2.3.4 NOAA Earth System Research Laboratory Interactive web site
319(1)
8.2.4 Other web sites Including Forecast Applications
319(1)
8.2.4.1 FEWS NET
319(1)
8.2.4.2 AGRHYMET, Niger
319(1)
8.2.5 Hints and Recommendations
320(1)
Appendix A: Acronyms
320(1)
Appendix B: Empirical Orthogonal Functions
320(1)
Note
321(1)
References
321(2)
9 Remote Sensing 323(57)
9.1 Scientific Background
323(39)
9.1.1 The Global Satellite Observing System
323(2)
9.1.1.1 Orbital Geometry
323(2)
9.1.1.2 Advantages and Limitations of Geosynchronous and Low-earth-orbit Satellites
325(1)
9.1.1.3 Scanning and Viewing Geometry
325(1)
9.1.2 Scientific Basis of Remote Sensing
325(6)
9.1.2.1 Electromagnetic Spectrum
325(1)
9.1.2.2 Radiance and Blackbody Radiation
326(1)
9.1.2.3 Radiative Transfer
327(3)
9.1.2.4 Reflectance
330(1)
9.1.2.5 Passive and Active Remote Sensing
331(1)
9.1.3 Spectral Bands or Channels
331(2)
9.1.3.1 Visible and Infrared Channels
331(1)
9.1.3.2 Microwave Channels
331(2)
9.1.4 Multispectral Analysis: Visualised Products
333(9)
9.1.4.1 Classification Using Individual Channels
334(1)
9.1.4.2 Differencing or Ratio of Two Channels
334(1)
9.1.4.3 Quantitative Feature Extraction
334(1)
9.1.4.4 RGB Products
334(8)
9.1.4.5 Blended or 'Sandwich' Image Products
342(1)
9.1.5 Satellite Retrieval of Meteorological Parameters
342(16)
9.1.5.1 Water Vapour
343(1)
9.1.5.2 Vertical Structure of Temperature, Humidity and Winds
344(3)
9.1.5.3 Clouds
347(5)
9.1.5.4 Precipitation
352(1)
9.1.5.5 Dust
353(1)
9.1.5.6 Fire, Smoke and Haze
353(2)
9.1.5.7 Volcanic Ash
355(2)
9.1.5.8 Lightning
357(1)
9.1.5.9 Surface Wetness and Vegetation
357(1)
9.1.5.10 Ocean Surface Winds
358(1)
9.1.6 Weather Radar
358(4)
9.1.6.1 Weather Radar Basics
358(4)
9.1.6.2 Ground and Satellite Weather Radar Products
362(1)
9.1.6.3 Wind Profilers
362(1)
9.2 Operational Methods
362(11)
9.2.1 Platforms and Sensors
364(3)
9.2.1.1 Geostationary Satellites and Sensors
364(1)
9.2.1.2 Low-earth-orbiting Satellites
364(3)
9.2.1.3 Satellite Operational Analysis Tools and Products
367(1)
9.2.1.4 Radar Operational Analysis Tools
367(1)
9.2.2 Large-scale Feature Identification
367(1)
9.2.2.1 Intertropical Discontinuity and Intertropical Convergence Zone
367(1)
9.2.2.2 Subseasonal Circulations: Madden-Julian Oscillation, Equatorial Waves
367(1)
9.2.2.3 Synoptic Systems
367(1)
9.2.3 Mesoscale and Local-scale Analysis
367(3)
9.2.3.1 Mesoscale Circulations
367(2)
9.2.3.2 Mesoscale Convective Systems
369(1)
9.2.3.3 Dust and Sand Storms
370(1)
9.2.3.4 Convective Cells, Outflow Boundaries, Cloud Lines
370(1)
9.2.4 Fog and Low Stratus
370(1)
9.2.5 Satellite Soundings
370(1)
9.2.6 Winds
370(1)
9.2.7 Aviation Hazards
370(2)
9.2.8 Marine Analysis
372(1)
9.2.9 Sources of Satellite Products
372(1)
9.3 Case Study, Presentations and Other Resources
373(5)
9.3.1 Radar and Satellite Analysis
373(4)
9.3.1.1 Mesoscale Convective Systems and an African Easterly Wave
373(1)
9.3.1.2 Tropical Cyclone, Undular Bore and Other Cloud Systems
373(4)
9.3.2 Presentations
377(1)
9.3.3 Education and Training
378(1)
Appendix: Acronyms
378(1)
References
378(2)
10 Numerical Weather Prediction over Africa 380(43)
10.1 Scientific Background
380(17)
10.1.1 Introduction
380(2)
10.1.2 Deterministic Numerical Weather Prediction Systems
382(13)
10.1.2.1 Observations
382(5)
10.1.2.2 Data Assimilation
387(2)
10.1.2.3 Global and Regional Numerical Weather Prediction Models
389(5)
10.1.2.4 Convective-scale Models
394(1)
10.1.2.5 Model Output Statistics
395(1)
10.1.3 Ensemble Prediction and Atmospheric Predictability
395(1)
10.1.4 Summary and Future Capability
396(1)
10.2 Operational Numerical Weather Prediction over Africa
397(22)
10.2.1 Current Capability of Deterministic Numerical Weather Prediction Forecasts
397(16)
10.2.1.1 Precipitation and Moisture Budget in Numerical Weather Prediction Models and Analyses
397(8)
10.2.1.2 Near-surface Temperatures and Humidities
405(2)
10.2.1.3 Low-level Monsoon Flow and Saharan Heat Low
407(3)
10.2.1.4 African Easterly Jet
410(1)
10.2.1.5 African Easterly Waves
410(3)
10.2.2 Predicting Severe Weather and Modelling Uncertainty
413(12)
10.2.2.1 Ensemble Forecasts from Deterministic Predictions
414(1)
10.2.2.2 World Meteorological Organization Severe Weather Forecast Demonstration Project
415(1)
10.2.2.3 Convective (Kilometre)-scale Modelling
416(3)
Acknowledgements
419(1)
Appendix: Acronyms
419(1)
Notes
419(1)
References
419(4)
11 West African Synthetic Analysis and Forecast: WASA/F 423(29)
11.1 Introduction
423(2)
11.2 The Intertropical Discontinuity/Intertropical Front, or Intertropical Boundary in Ghana
425(1)
11.2.1 Main Characteristics
426(1)
11.2.2 Drawing Rules
426(1)
11.2.3 Specific Cases
426(1)
11.3 The Heat Low or Thermal Depression
426(3)
11.3.1 Main Characteristics
426(2)
11.3.2 Drawing Rules
428(1)
11.4 The Subtropical Jet
429(1)
11.5 Features Associated with Mid-latitudes
430(1)
11.6 Mid-level Dry Air
431(1)
11.6.1 Main Characteristics
431(1)
11.6.2 Drawing Rules
431(1)
11.7 The Tropical Easterly Jet
431(2)
11.7.1 Main Characteristics
431(2)
11.7.2 Drawing Rules
433(1)
11.8 The African Easterly Jet
433(2)
11.8.1 Main Characteristics
433(1)
11.8.2 Drawing Rules
433(2)
11.9 African Easterly Waves and Cyclonic Vortices
435(6)
11.9.1 Main Characteristics
435(2)
11.9.2 Drawing Rules
437(4)
11.10 The African Monsoon Layer and the Monsoon Trough
441(3)
11.10.1 Main Characteristics
441(1)
11.10.2 Drawing Rules
441(3)
11.11 Dust or Sand
444(1)
11.12 Convection
444(7)
11.12.1 Analysis of the Convective Activity
445(1)
11.12.2 Forecast Rules and Required Diagnostics for Convection
445(6)
Appendix: Acronyms
451(1)
Notes
451(1)
References
451(1)
Index 452
Douglas J Parker is the Met Office Professor of Meteorology at the University of Leeds.

Mariane Diop-Kane heads the Research and Development Department in the Senegalese weather service (ANACIM).