Atjaunināt sīkdatņu piekrišanu

E-grāmata: Methods in Algorithmic Analysis

(Brown University, Providence, Rhode Island, USA)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 93,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Explores the Impact of the Analysis of Algorithms on Many Areas within and beyond Computer Science A flexible, interactive teaching format enhanced by a large selection of examples and exercises

Developed from the authors own graduate-level course, Methods in Algorithmic Analysis presents numerous theories, techniques, and methods used for analyzing algorithms. It exposes students to mathematical techniques and methods that are practical and relevant to theoretical aspects of computer science.

After introducing basic mathematical and combinatorial methods, the text focuses on various aspects of probability, including finite sets, random variables, distributions, Bayes theorem, and Chebyshev inequality. It explores the role of recurrences in computer science, numerical analysis, engineering, and discrete mathematics applications. The author then describes the powerful tool of generating functions, which is demonstrated in enumeration problems, such as probabilistic algorithms, compositions and partitions of integers, and shuffling. He also discusses the symbolic method, the principle of inclusion and exclusion, and its applications. The book goes on to show how strings can be manipulated and counted, how the finite state machine and Markov chains can help solve probabilistic and combinatorial problems, how to derive asymptotic results, and how convergence and singularities play leading roles in deducing asymptotic information from generating functions. The final chapter presents the definitions and properties of the mathematical infrastructure needed to accommodate generating functions.

Accompanied by more than 1,000 examples and exercises, this comprehensive, classroom-tested text develops students understanding of the mathematical methodology behind the analysis of algorithms. It emphasizes the important relation between continuous (classical) mathematics and discrete mathematics, which is the basis of computer science.

Recenzijas

helpful to any mathematics student who wishes to acquire a background in classical probability and analysis This is a remarkably beautiful book that would be a pleasure for a student to read, or for a teacher to make into a year's course.

Harvey Cohn, Computing Reviews, May 2010

Preface xiii
List of Symbols
xvii
Abbreviations xix
Preliminaries
1(24)
Why Do We Analyze Algorithms?
2(8)
Cost of Algorithms
2(1)
One Problem - Several Solutions
3(5)
Matrix Multiplication
8(2)
Proofs
10(12)
Proof by Counting
12(2)
Induction
14(8)
Iteration and Recursion
22(3)
Combinatorics
25(54)
Properties of Summation
26(8)
Index Transformations
28(6)
Multiple Sums
34(8)
Changing Order of Summation
34(2)
Summations and Finite Differences
36(4)
Summation by Parts
40(2)
Principles of Counting
42(2)
Permutations and Combinations
44(12)
Combinations and Lattice Paths
48(8)
Binomial Coefficients
56(16)
Definitions and Properties
56(2)
Transformations and Basic Sums
58(6)
Inverse Relations
64(2)
Vandermonde Convolution
66(6)
Binomial Coefficients and Hypergeometric Functions
72(5)
Abel's Identity
75(2)
Stirling Approximation
77(2)
Probability
79(56)
Set Operations
80(2)
Sample Space and Random Variables
82(4)
Calculating Probabilities
86(8)
Random Variables
94(25)
Probability Mass Function
94(5)
Expected Values
99(13)
Variance and Moments
112(7)
Functions of Random Variables
119(1)
Conditional Probabilities
119(4)
Independence
123(4)
Joint Distributions
127(3)
Dependent Random Variables
130(5)
More about Probability
135(64)
Special Distributions
135(23)
Bernoulli Variables and the Binomial Distribution
136(4)
The Multinomial Distribution
140(1)
The Geometric Distribution
141(7)
The Negative-Binomial Distribution
148(3)
The Hypergeometric Distribution
151(3)
The Poisson Distribution
154(3)
The Normal Distribution
157(1)
Types of Probabilistic Convergence
158(4)
The Theorem of Total Probability
162(8)
Bayes' Theorem
170(4)
Convolution
174(9)
Order Statistics
183(5)
Chebyshev Inequalities
188(4)
Sundry Examples
192(7)
Recurrences or Difference Equations
199(72)
How Do Difference Equations Arise?
200(8)
Properties of Difference Equations
208(7)
First Order Linear Difference Equations
215(6)
Recurrences with ``Integer Functions''
221(8)
Divide-and-Conquer Recurrences
221(3)
Binary Search Recurrence
224(3)
Mergesort Recurrence
227(2)
Quicksort Recurrence
229(7)
Some Full-History Recurrences
233(3)
Recurrences in Numerical Analysis
236(6)
Continued Fractions
242(9)
Partial Difference Equations
251(12)
The Relations with Continuous Calculations
254(2)
Counting Arrangements---with and without Repetition
256(5)
Stirling Numbers
261(2)
Some Applications
263(8)
Bounds from Recurrences
263(3)
Recurrences and Finite Differences
266(5)
Introduction to Generating Functions
271(84)
Generating Functions---Definitions
272(15)
Ordinary Generating Functions
272(5)
Exponential Generating Functions
277(3)
Some Generalizations
280(3)
Multivariate Generating Functions
283(2)
Multisection of Series
285(2)
Extraction of Coefficients
287(12)
Transformations between the Generating Functions
293(1)
Multivariate Generating Functions
294(2)
Recurrences from Generating Functions
296(3)
Counting Binary Trees
299(6)
Solving Recurrences
305(22)
Ordinary Recurrence Relations
305(10)
Vector Recurrence Relations
315(4)
Partial Difference Equations
319(4)
Walks on the Integer Grid
323(4)
Snake Oil Summation
327(4)
Applications in Probability
331(16)
Definition of Generating Functions Used in Probability
331(4)
Examples and Problems
335(2)
Convolution
337(3)
Quicksort and Binary Search Analysis
340(7)
The Lagrange Inversion Theorem
347(8)
Enumeration with Generating Functions
355(68)
Definition of Enumerators
355(4)
Sum and Product Rules
359(5)
The Sum Rule
359(1)
The Product Rule
360(4)
Counting Compositions of Integers
364(17)
Homogeneous Compositions
364(3)
Inhomogeneous Compositions
367(2)
Compositions with Restrictions
369(3)
Heterogeneous Components
372(3)
Limited Selection
375(6)
Further Set Operations
381(11)
Substitution
383(5)
Marking
388(2)
Power Set
390(1)
Multiset Operation
391(1)
Partitions of Integers
392(11)
Exponential Enumerators
403(20)
The Sum and Product of Labeled Structures
404(4)
Permutations and Cycles
408(5)
Shuffle Product
413(3)
The Birthday Problems
416(7)
Further Enumeration Methods
423(66)
Enumeration of Trees
423(11)
Unlabeled Trees
424(5)
Labeled Trees
429(1)
Counting Alternating Permutations
430(4)
Occupancy Enumeration
434(12)
Distribution of Identical Balls into Distinguishable Bins
435(4)
Distribution of Distinct Objects into Ordered Cells
439(6)
Distribution of Identical Objects into Identical Cells
445(1)
Distribution of Distinct Objects into Identical Cells
445(1)
The Principle of Inclusion and Exclusion (PIE)
446(14)
The PIE for Homogeneous Properties
455(5)
Extensions and Further Applications of the PIE
460(8)
The PIE via the Symbolic Method
464(4)
Probabilistic Inclusion - Exclusion Principle
468(11)
Runs in Permutations
479(4)
Counting Permutations of [ l..n] with k Ascents
480(2)
Counting Permutations of [ l..n] with Runs of Ascents of Length r
482(1)
Counting Permutations of [ l..n] with m Maximal Runs of Ascents
483(1)
Special Topics
483(6)
Combinatorics of Strings
489(56)
Operations on Languages
490(4)
Regular Languages
494(9)
Definitions
495(2)
Finite State Automata
497(2)
Finite State Automata and Regular Languages
499(4)
Counting Regular Languages
503(14)
Word Equations
503(2)
Counting Regular Languages
505(9)
Admissibility Considerations
514(3)
Waiting Time Probabilistic Problems
517(10)
Algorithms and Markov Chains
527(18)
Introduction to Asymptotics
545(84)
Asymptotic Notations and Applications
546(17)
Properties of the Big Oh Notation
547(3)
Asymptotic Expansions
550(9)
Limits for Indeterminate Forms
559(4)
The Critical Range Method
563(6)
Rice's Method
569(10)
The Euler Summation Formula
579(12)
Alternating Series
589(2)
Finding Primes
591(7)
Asymptotics from Recurrences
598(11)
Divide-and-Conquer Asymptotics
598(6)
Direct Asymptotics
604(5)
Limit Laws in Probability
609(20)
Laws of Large Numbers
610(6)
The Central Limit Theorem
616(7)
Random Walks
623(6)
Asymptotics and Generating Functions
629(32)
Elementary Bounds from Generating Functions
629(5)
The Lagrange Inversion Formula
632(2)
Estimates from Singularities
634(15)
Poles
634(7)
Difference Equations: Asymptotics from GFs
641(3)
Removal of Singularities
644(2)
Darboux Theorem and its Relation to the Binomial Theorem
646(2)
Logarithmic Singularities
648(1)
Estimates from Entire Functions
649(9)
Integration by Parts
649(4)
Asymptotics of Hypergeometric Series
653(3)
The Laplace Method
656(2)
Examples and Exercises
658(3)
Review of Analytic Techniques
661(38)
Complex Numbers
661(6)
Review of Power Series
667(10)
The Taylor Series
667(6)
Operations on Power Series
673(4)
Functions of a Complex Variable: Basic Concepts
677(9)
Diagonalization of Series
683(3)
Differential Operators
686(6)
Partial Fraction Decomposition
692(2)
Some Special Functions
694(2)
Stieltjes Integrals
696(3)
Appendices
699(54)
Appendix A: Binomial Coefficients
699(7)
Appendix B: The Bernoulli Numbers
706(2)
Appendix C: Stirling and Euler/Eulerian Numbers
708(7)
Appendix D: Fibonacci Numbers
715(4)
Appendix E: Harmonic Numbers
719(2)
Appendix F: Miscellaneous Formulas
721(4)
Appendix G: The Gamma Function
725(3)
Appendix H: Random Variables and Distributions
728(2)
Appendix I: Combinatorics of Permutations
730(2)
Appendix J: Continued Fractions
732(6)
Appendix K: Occupancy Enumeration
738(2)
Appendix L: Generating Functions
740(9)
Appendix M: Recurrences
749(4)
Answers/Hints to Selected Problems 753(19)
Bibliography 772(11)
Index 783
Vladimir A. Dobrushkin is a professor in the Division of Applied Mathematics at Brown University and a professor in the Department of Computer Science at Worcester Polytechnic Institute.