Atjaunināt sīkdatņu piekrišanu

Methods for Analyzing Large Neuroimaging Datasets 2025 ed. [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 432 pages, height x width: 254x178 mm, 117 Illustrations, color; 8 Illustrations, black and white; XI, 432 p. 125 illus., 117 illus. in color., 1 Hardback
  • Sērija : Neuromethods 218
  • Izdošanas datums: 10-Dec-2024
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1071642596
  • ISBN-13: 9781071642597
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 432 pages, height x width: 254x178 mm, 117 Illustrations, color; 8 Illustrations, black and white; XI, 432 p. 125 illus., 117 illus. in color., 1 Hardback
  • Sērija : Neuromethods 218
  • Izdošanas datums: 10-Dec-2024
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1071642596
  • ISBN-13: 9781071642597
Citas grāmatas par šo tēmu:
This Open Access volume explores the latest advancements and challenges in standardized methodologies, efficient code management, and scalable data processing of neuroimaging datasets. The chapters in this book are organized in four parts. Part One shows the researcher how to access and download large datasets, and how to compute at scale. Part Two covers best practices for working with large data, including how to build reproducible pipelines and how to use Git. Part Three looks at how to do structural and functional preprocessing data at scale, and Part Four describes various toolboxes for interrogating large neuroimaging datasets, including machine learning and deep learning approaches. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory.





Authoritative and comprehensive, Methods for Analyzing Large Neuroimaging Datasets is a valuable resource that will help researchers obtain the practical knowledge necessary for conducting robust and reproducible analyses of large neuroimaging datasets.
Getting Started, Getting Data.- Neuroimaging Workflows in the
Cloud.- Establishing a Reproducible and Sustainable Analysis
Workflow.- Optimizing Your Reproducible Neuroimaging Workflow with
Git.- End-to-End Processing of M/EEG Data with BIDS, HED, and EEGLAB.-
Actionable Event Annotation and Analysis in fMRI: A Practical Guide to Event
Handling.- Standardized Preprocessing in Neuroimaging: Enhancing Reliability
and Reproducibility.- Structural MRI and Computational Anatomy.- Diffusion
MRI Data Processing and Analysis: A Practical Guide with ExploreDTI.- A
Pipeline for Large-Scale Assessments of Dementia EEG Connectivity Across
Multicentric Settings.- Brain Predictability Toolbox.- NBS-Predict: An
Easy-To-Use Toolbox for Connectome-Based Machine Learning.- Normative
Modeling with the Predictive Clinical Neuroscience Toolkit
(PCNtoolkit).- Studying the Connectome at a Large Scale.- Deep Learning
Classification Based on Raw MRI Images.