Atjaunināt sīkdatņu piekrišanu

E-grāmata: Methods and Applications of Ab-Initio Calculations

  • Formāts: 125 pages
  • Sērija : Physics Research and Technology
  • Izdošanas datums: 22-Aug-2024
  • Izdevniecība: Nova Science Publishers, Inc.
  • Valoda: eng
  • ISBN-13: 9798891139725
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 97,55 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Methods and Applications of Ab-Initio Calculations
  • Formāts: 125 pages
  • Sērija : Physics Research and Technology
  • Izdošanas datums: 22-Aug-2024
  • Izdevniecība: Nova Science Publishers, Inc.
  • Valoda: eng
  • ISBN-13: 9798891139725
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Density Functional Theory (DFT) is a cornerstone in computational quantum chemistry and condensed matter physics, offering a powerful framework for understanding and predicting the properties of atoms, molecules, and solids. It provides a computationally efficient alternative by focusing on the electron density rather than the many-body wave functions, significantly reducing the computational cost while retaining accuracy. DFT has been successfully applied to a wide variety of materials and systems encountered in chemistry, physics, materials science and beyond. It also plays a crucial role in tackling many-body problems in quantum mechanics, offering a versatile and efficient approach to understanding the electronic structure and properties of complex systems. Many-body problems involve interactions between multiple particles, making traditional wave function-based methods computationally demanding, and often impractical for large systems. This book provides a comprehensive and accessible exploration of the principle, methodologies, and practical applications of ab-initio computational techniques in the fields of material science. Starting from the basics of quantum mechanics, the book introduces readers to the theoretical foundations necessary for understanding ab-initio methods. It then systematically covers various computational approaches, including density functional theory (DFT), Hartree-Fock theory, and post-Hartree-Fock methods, offering insights into their underlying principles, and advantages. Additionally, the reader is introduced to the many important roles of DFT in revealing the electronic structure of materials, including band structures, energy gaps, Fermi surfaces, and NMR studies as well as in determining the effect of hydrostatic pressure on the optoelectronic and thermoelectric properties of materials.Moreover, it highlights DFT's ability to accurately predict structural optimizations, phase transitions, and magnetic properties, offering invaluable insights into the behaviour of materials under diverse conditions. The editors believe that this book will serve as an indispensable resource for researchers, students, and practitioners who wish to leverage the predictive power of DFT in advancing scientific understanding and technological advances.