Atjaunināt sīkdatņu piekrišanu

E-grāmata: Methods for Partial Differential Equations: Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models

  • Formāts: PDF+DRM
  • Izdošanas datums: 23-Feb-2018
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783319664569
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 23-Feb-2018
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783319664569
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area.

The book is organized in five parts:

In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation.

Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models.

Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results.

Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions.
The last part features selected research projects and general background material.

Recenzijas

This is a self-contained monograph on the theory of partial differential equations, mainly oriented for nonlinear hyperbolic and dispersive equations and systems. This monograph is totally a good introduction to the beginners of the study of partial differential equations, particularly to whom are interested in wave and dispersive equations and systems. (Takashi Suzuki, zbMATH 1503.35003, 2023) This book contains both a careful presentation of several important theoretic notions and properties but also a selection of well-chosen exercises at the end of each chapter. The exposition is flexible enough to allow substantial changes in the presentation of the arguments without compromising comprehension . this volume is a valuable resource for advanced undergraduate and graduate students . This book may also be useful for Ph.D. students or for special courses or seminars. (Viceniu D. Rdulescu, Mathematical Reviews, October, 2018)

Part 1.- Introduction.- Part 2.- Partial differential equations in
models.- Basics for partial differential equations.- The Cauchy-Kovalevskaja
theorem.- Holmgrens uniqueness theorem.- Method of
characteristics.- Burgers equation.- Laplace equation - properties of
solutions - starting point of elliptic theory.- Heat equation - properties of
solutions - starting point of parabolic theory.- Wave equation - properties
of solutions - starting point of hyperbolic theory.- Energies of solutions -
one of the most important quantities.- Part 3.- Phase space analysis for heat
equation.- Phase space analysis and smoothing for
Schrödinger equations.- Phase space analysis for wave models.- Phase space
analysis for plate models.- The method of stationary phase and applications.-
Part 4.- Semilinear heat models.- Semilinear classical damped wave
models.- Semilinear wave models with a special structural
dissipation.- Semilinear classical wave models.- Semilinear Schrödinger
models.- Linear hyperbolic systems.- Part 5.- Research projects for
beginners.- Background material.
Marcelo Rempel Ebert (1977) is an Associate Professor at the Department of Computing and Mathematics at the University of Sćo Paulo (USP). He obtained his Ph.D. degree in 2004 from Federal University of Sćo Carlos, Brazil.  His original contributions are mainly devoted to Evolution  partial differential equations, in particular, questions related to the asymptotic behaviour and global existence of solutions for the Cauchy problem to semilinear wave equations.





Michael Gerhard Reissig (1958) is Professor for Partial Differential Equations at the Institute of Applied Analysis of the Technical University Bergakademie Freiberg. He obtained the degree Dr.rer.nat. in 1987, Dr.sc. in 1991 and Dr.habil. in 1992. His main contributions are devoted to the abstract Cauchy-Kovalevskaja theory, to Hele-Shaw flows, to elliptic equations, hyperbolic equations and Schrödinger equations as well.