Atjaunināt sīkdatņu piekrišanu

E-grāmata: Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization

Edited by (Assistant Professor, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China)
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Aug-2021
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128242407
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 172,26 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Aug-2021
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128242407
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization presents cutting edge, detailed methodologies needed to create sustainable growth in any field or industry, including life cycle assessments, building design, and energy systems. The book utilized a systematic structured approach to each of the methodologies described in an interdisciplinary way to ensure the methodologies are applicable in the real world, including case studies to demonstrate the methods. The chapters are written by a global team of authors in a variety of sustainability related fields.

Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization will provide academics, researchers and practitioners in sustainability, especially environmental science and environmental engineering, with the most recent methodologies needed to maintain a sustainable future. It is also a necessary read for postgraduates in sustainability, as well as academics and researchers in energy and chemical engineering who need to ensure their industrial methodologies are sustainable.

  • Provides a comprehensive overview of the most recent methodologies in sustainability assessment, prioritization, improvement, design and optimization
  • Sections are organized in a systematic and logical way to clearly present the most recent methodologies for sustainability and the chapters utilize an interdisciplinary approach that covers all considerations of sustainability
  • Includes detailed case studies demonstrating the efficacies of the described methods
Contributors xv
Chapter 1 Methods in sustainability science
Ao Yang
Ruojue Lin
Tao Shi
Huijuan Xiao
Weifeng Shen
Jingzheng Ren
1.1 Introduction
1(1)
1.2 Sustainability assessment and analysis
2(2)
1.2.1 Sustainability metrics/indicators
2(1)
1.2.2 Sustainability analysis tools
3(1)
1.2.3 Material flow analysis
4(1)
1.3 Sustainability ranking and prioritization
4(2)
1.4 Sustainability enhancement and improvement
6(1)
1.5 Sustainability design and optimization
7(1)
1.6 Conclusion
8(5)
Acknowledgments
8(1)
References
8(5)
Chapter 2 Business contributions to sustainable development goals
13(14)
Juniati Gunawan
2.1 Introduction
13(1)
2.2 Literature review
14(2)
2.2.1 Sustainable development goals (SDGs)
14(1)
2.2.2 Sustainability reports
15(1)
2.3 Materials and methods
16(1)
2.4 Discussion
17(6)
2.4.1 SDGs disclosures based on industrial sector
17(1)
2.4.2 SDGs disclosures based on goals
18(5)
2.5 Conclusion
23(4)
References
24(3)
Chapter 3 Sustainability assessment: Metrics and methods
27(20)
Himanshu Nautiyal
Varun Goel
3.1 Introduction
27(2)
3.2 Need of sustainability assessment
29(3)
3.2.1 Steady-state economy
30(1)
3.2.2 Circular economy
31(1)
3.2.3 Ecological footprints
31(1)
3.3 Various methods of sustainability assessment
32(7)
3.3.1 Life-cycle assessment
32(2)
3.3.2 Socioeconomic impact assessment
34(1)
3.3.3 Strategic environmental assessment
35(1)
3.3.4 Cost-benefit analysis
36(1)
3.3.5 Travel cost analysis
37(1)
3.3.6 Social impact assessment
37(1)
3.3.7 Contingent valuation method
37(1)
3.3.8 Hedonic pricing method
38(1)
3.3.9 Multicriteria analysis
38(1)
3.3.10 Material intensity per service unit
39(1)
3.3.11 Analytic network process
39(1)
3.3.12 Environmental and sustainability rating systems
39(1)
3.4 Comparison of sustainability assessment methods
39(2)
3.5 Conclusion
41(6)
References
43(4)
Chapter 4 Sustainability assessment of energy systems: Indicators, methods, and applications
47(24)
Imran Khan
4.1 Introduction
47(3)
4.1.1 Principle of sustainability
48(1)
4.1.2 Energy system and sustainability
48(2)
4.2 Sustainability indicators
50(3)
4.3 Sustainability assessment methods
53(9)
4.3.1 Multiattribute Value Theory (MAVT)
55(1)
4.3.2 Weighted sum method (WSM)
55(1)
4.3.3 Analytic hierarchy process (AHP)
56(1)
4.3.4 Weighted product method (WPM)
56(1)
4.3.5 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
57(2)
4.3.6 Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE)
59(1)
4.3.7 ELimination Et Coix Traduisant la REalite (ELECTRE)
59(1)
4.3.8 VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)
60(1)
4.3.9 Complex Proportional Assessment (COPRAS)
61(1)
4.3.10 Other methods
62(1)
4.4 Sustainability assessment: an application of COPRAS method
62(5)
4.4.1 Results and discussion
64(3)
4.5 Conclusion
67(4)
References
67(4)
Chapter 5 Sustainability measurement: Evolution and methods
71(16)
Mariolina Longo
Matteo Mura
Chiara Vagnini
Sara Zanni
5.1 Why measuring sustainability matters in the current business landscape
71(1)
5.2 The evolution of sustainability measurement research
72(5)
5.2.1 Literature intellectual structure
72(2)
5.2.2 Sustainability measurement: a broken compass
74(2)
5.2.3 Contribution to performance measurement and the management literature
76(1)
5.3 Methods and tools: the path toward sustainability measurement
77(5)
5.3.1 Sustainability core issues and stakeholder mapping
77(1)
5.3.2 Sustainability performance measurement system
78(3)
5.3.3 Sustainability reporting
81(1)
5.4 The future of sustainability measurement
82(5)
References
83(4)
Chapter 6 Industrial sustainability performance measurement system-challenges for the development
87(18)
Alessandra Neri
6.1 Industrial sustainability
87(1)
6.2 Industrial sustainability performance measurement
87(2)
6.2.1 Why do firms measure industrial sustainability-related performance?
88(1)
6.2.2 How do firms measure industrial sustainability-related performance?
88(1)
6.2.3 Focus of the present chapter
88(1)
6.3 Industrial sustainability PMS--toward an effective development
89(4)
6.3.1 Usefulness to internal and external stakeholders
90(1)
6.3.2 Completeness and balance according to a holistic perspective on industrial sustainability
90(1)
6.3.3 Usability and manageability
91(1)
6.3.4 Selection of indicators
92(1)
6.3.5 Context of application
92(1)
6.4 A scalable framework for measuring industrial sustainability performance
93(4)
6.5 Concluding remarks and future perspectives
97(8)
References
99(6)
Chapter 7 Life cycle assessment: methods, limitations, and illustrations
105(14)
Sara Toniolo
Lorenzo Borsoi
Daniela Camana
7.1 Introduction to the life cycle assessment (LCA) methodology
105(6)
7.1.1 First phase
107(1)
7.1.2 Second phase
108(1)
7.1.3 Third phase
109(1)
7.1.4 Fourth phase
110(1)
7.2 International standards
111(2)
7.3 Applications
113(2)
7.4 Limitations
115(4)
References
116(3)
Chapter 8 Life cycle assessment for better sustainability: methodological framework and application
119(16)
Aman Kumar
Ekta Singh
Rahul Mishra
Sunil Kumar
8.1 Introduction
119(1)
8.2 LCA methodology
120(1)
8.3 Important aspects of LCA methodology
121(3)
8.3.1 Goal setting and functional unit
121(1)
8.3.2 Assigning environmental burdens
121(1)
8.3.3 Credit for avoided burden
121(1)
8.3.4 Consequential LCA
122(1)
8.3.5 Inventory data availability and transparency
122(1)
8.3.6 Identifying data uncertainty
122(1)
8.3.7 Distinguishing risk assessment
123(1)
8.3.8 Reporting quantitative and qualitative information
123(1)
8.3.9 LCA does not always state a "winner"
123(1)
8.3.10 LCA is an iterative process
124(1)
8.4 Sustainability approach
124(1)
8.5 Application of LCA
125(6)
8.5.1 Sustainable cities
125(1)
8.5.2 Municipal solid waste management
126(1)
8.5.3 Wastewater treatment
127(1)
8.5.4 Solar power
128(1)
8.5.5 Agricultural strategic development planning
129(1)
8.5.6 Biofuels
130(1)
8.6 LCA limitations and their probable solutions
131(1)
8.7 Conclusion
132(3)
References
132(3)
Chapter 9 Life cycle sustainability dashboard and communication strategies of scientific data for sustainable development
135(18)
Daniela Camana
Alessandro Manzardo
Andrea Fedele
Sara Toniolo
9.1 Introduction
135(1)
9.2 Ethical definition of sustainable development and communication strategies
136(2)
9.3 Life Cycle Sustainability
138(3)
9.3.1 Data report and illustration of results
138(3)
9.4 The dashboard of sustainability, a tool for sharing results
141(2)
9.5 The life cycle sustainability dashboard
143(2)
9.6 Other sustainability tools and communication strategies
145(1)
9.7 Conclusions
146(7)
References
147(6)
Chapter 10 Multicriteria decision-making methods for results interpretation of life cycle assessment
153(16)
Ana Carolina Maia Angelo
10.1 Introduction
153(1)
10.2 An overview of the multicriteria approach
154(3)
10.2.1 The MCDM basic process
154(1)
10.2.2 MCDM methods classification
155(1)
10.2.3 A brief description of the main MCDM methods
156(1)
10.3 LCA and multicriteria methods integration
157(8)
10.3.1 Selection of MSWM option
159(2)
10.3.2 Selection of sewer pipe materials
161(1)
10.3.3 Selection of poultry production systems
161(2)
10.3.4 Urban transport systems comparison
163(2)
10.4 Discussion
165(1)
10.5 Concluding remarks
165(4)
References
165(4)
Chapter 11 Composite sustainability indices (CSI); a robust tool for the sustainability measurement of chemical processes from "early design" to "production" stages
169(28)
Mohammad Hossein Ordouei
11.1 Introduction
169(4)
11.2 The CSI methodology and applications
173(12)
11.2.1 WAste Reduction algorithm and potential environment impact balance
174(1)
11.2.2 Risk assessment index
175(6)
11.2.3 Energy impact index
181(4)
11.3 Discussion
185(7)
11.4 Conclusions
192(5)
Reference
192(5)
Chapter 12 Sustainability assessment using the ELECTRE TRI multicriteria sorting method
197(18)
Luis C. Dias
12.1 Introduction
197(1)
12.2 ELECTRE TRI in the MCDA panorama
198(1)
12.3 ELECTRE TRI in detail
199(4)
12.3.1 Origins and purpose
199(1)
12.3.2 Classification rules
200(1)
12.3.3 Valued outranking relations
201(2)
12.3.4 Other variants
203(1)
12.4 An illustrative example
203(4)
12.5 Setting the parameter values
207(4)
12.6 Conclusion
211(4)
Acknowledgments
212(1)
References
213(2)
Chapter 13 Sustainability improvement opportunities for an industrial complex
215(12)
Rahul Singh Yadav
Dilawar Husain
Ravi Prakash
13.1 Introduction
215(1)
13.2 Methodology
216(2)
13.2.1 Design of the various systems and utilities
216(1)
13.2.2 Ecological footprint (EF)
217(1)
13.3 Case study
218(1)
13.3.1 Survey of MNNIT Industrial Complex
218(1)
13.3.2 Data collection
218(1)
13.4 Results and discussion
218(5)
13.4.1 Rooftop solar PV system
218(2)
13.4.2 Rainwater harvesting system
220(1)
13.4.3 Solar day-lighting System
220(2)
13.4.4 Turbo ventilators
222(1)
13.4.5 Chilled water air conditioning system
222(1)
13.5 Scope of future work
223(2)
13.6 Conclusions
225(2)
Short Biography of the Authors
225(1)
References
226(1)
Chapter 14 Coupled life cycle assessment and data envelopment analysis to optimize energy consumption and mitigate environmental impacts in agricultural production
227(38)
Ashkan Nabavi-Pelesaraei
Zahra Saber
Fatemeh Mostashari-Rad
Hassan Ghasemi-Mobtaker
Kwok-wing Chau
14.1 Introduction
227(1)
14.2 Data collection
228(4)
14.3 Energy in agriculture
232(3)
14.3.1 Energy analysis
232(2)
14.3.2 Energy indices and forms
234(1)
14.4 Life cycle assessment
235(8)
14.4.1 Scope and goal definition
235(1)
14.4.2 Life cycle inventory
235(5)
14.4.3 Life cycle impact assessment
240(3)
14.5 Data envelopment analysis
243(6)
14.6 Integration of LCA and DEA
249(1)
14.7 Result analysis
250(8)
14.7.1 Energy use pattern
250(2)
14.7.2 Environmental life cycle analysis
252(3)
14.7.3 Energy optimization by DEA
255(2)
14.7.4 Mitigation of environmental impacts by DEA + LCA
257(1)
14.8 Conclusions
258(7)
References
259(6)
Chapter 15 Lean integrated management system for sustainability improvement: An integrated system of tools and metrics for sustainability management
265(30)
Joao Paulo Estevam de Souza
15.1 Introduction
266(1)
15.2 Literature overview and background
266(6)
15.2.1 Sustainability
266(1)
15.2.2 Management systems
267(1)
15.2.3 Lean manufacturing system
268(4)
15.3 The Lean Integrated Management System for Sustainability Improvement (LIMSSI) model
272(7)
15.3.1 How to implement the LIMSSI model
273(6)
15.4 Conclusions
279(16)
References
289(6)
Chapter 16 Coupled life cycle thinking and data envelopment analysis for quantitative sustainability improvement
295(26)
Mario Martin-Gamboa
Diego Iribarren
16.1 Introduction
295(5)
16.1.1 Life cycle approaches
297(1)
16.1.2 Data envelopment analysis
298(2)
16.2 Methodological framework
300(4)
16.2.1 Sustainability-oriented LCA + DEA approaches
300(3)
16.2.2 From LCA + DEA to LCSA + DEA
303(1)
16.3 Progress in sustainability-oriented LCA + DEA
304(9)
16.3.1 Indicators and sustainability benchmarking
304(4)
16.3.2 Sustainability-oriented prioritization
308(1)
16.3.3 Other advancements
308(5)
16.4 Delving into needs in sustainability-oriented LCA + DEA
313(1)
16.5 Conclusions and perspectives
314(7)
Acknowledgments
315(1)
References
315(6)
Chapter 17 How can sensors be used for sustainability improvement?
321(24)
Patryk Kot
Khalid S. Hashim
Magomed Muradov
Rafid Al-Khaddar
17.1 Introduction
321(1)
17.2 Sustainability in Civil Engineering
322(3)
17.3 Working principle of sensing technologies for sustainability improvement
325(7)
17.3.1 Acoustics sensing methods
326(1)
17.3.2 Magnetic sensing methods (Hall-effect sensor)
327(1)
17.3.3 Electromagnetic sensing methods
328(4)
17.4 Installation methods of sensing technologies in structural and environmental applications
332(1)
17.5 Applications of sensing technology in civil and environmental engineering
333(4)
17.5.1 Civil engineering applications
333(2)
17.5.2 Environmental engineering applications
335(2)
17.6
Chapter Summary
337(8)
References
338(7)
Chapter 18 Sustainable design based on LCA and operations management methods: SWOT, PESTEL, and 7S
345(20)
Manel Sansa
Ahmed Badreddine
Taieb Ben Romdhane
18.1 Introduction
345(1)
18.2 Methodology
346(7)
18.2.1 SWOT analysis
347(3)
18.2.2 The 7S analysis
350(1)
18.2.3 The PESTEL analysis
351(2)
18.2.4 Integration of the SWOT, 7S, and PESTEL
353(1)
18.3 Creation of strategic scenarios
353(1)
18.3.1 Developed algorithms
353(1)
18.3.2 Web application
354(1)
18.4 Illustrative example
354(6)
18.5 Results and discussion
360(1)
18.6 Conclusion
361(4)
Acknowledgments
362(1)
References
362(3)
Chapter 19 The importance of integrating lean thinking with digital solutions adoption for value-oriented high productivity of sustainable building delivery
365(26)
Moshood Olawale Fadeyi
19.1 Introduction
365(3)
19.2 Digital solutions and lean thinking adoption
368(3)
19.2.1 Digital solutions adoption
368(1)
19.2.2 Lean thinking adoption
369(2)
19.3 Typical wastes in the management of the construction process
371(5)
19.3.1 Defective production
372(1)
19.3.2 Over-processing
372(1)
19.3.3 Waiting
373(1)
19.3.4 Unused talent
373(1)
19.3.5 Transportation
374(1)
19.3.6 Inventory
374(1)
19.3.7 Motion
375(1)
19.3.8 Excessive production
375(1)
19.4 Case study
376(5)
19.4.1 Digital solutions for sustainable building delivery
377(2)
19.4.2 Lean thinking for sustainable building delivery
379(2)
19.5 Challenges of adopting digital solutions grounded in lean thinking in the industry
381(2)
19.5.1 Challenges facing adoption of digital solutions
381(1)
19.5.2 Challenges facing adoption of lean thinking
382(1)
19.6 Conclusion and future directions
383(8)
Biography
384(1)
References
385(6)
Chapter 20 Robust optimization and control for sustainable processes
391(30)
Alessandro Di Pretoro
Ludovic Montastruc
Xavier Joulia
Flavio Manenti
20.1 Robust design challenges in a renewables-based landscape
391(3)
20.1.1 The renewables challenge
391(1)
20.1.2 Recasting the petrochemical industry process design procedure
392(1)
20.1.3 Sustainability-oriented design
393(1)
20.2 Feasibility assessment
394(5)
20.2.1 Feasibility limits in biomass processing
394(1)
20.2.2 The biorefinery distillation case study
395(1)
20.2.3 Feasibility assessment via residue curve maps
396(3)
20.3 Flexible, sustainable, and economic optimal process design procedure
399(7)
20.3.1 Premises on the uncertainty characterization
399(1)
20.3.2 Introduction to the flexibility indices
399(3)
20.3.3 Application to the biorefinery case study
402(4)
20.4 Process intensification
406(5)
20.4.1 General features
406(1)
20.4.2 Applications to distillation
407(4)
20.5 Process dynamics and control
411(2)
20.5.1 The concept of switchability
411(1)
20.5.2 Application of the switchability assessment
411(2)
20.6 Conclusions
413(8)
Greek letters
417(1)
List of acronyms and symbols
417(1)
References
417(4)
Index 421
Jingzheng Ren is Assistant Professor of Modelling for Energy, Environment and Sustainability at the Department of Industrial and Systems Engineering of Hong Kong Polytechnic University (PolyU). He has also been nominated as adjunct/honorary associate professor of University of Southern Denmark (Denmark) and associated senior research fellow of the Institute for Security & Development Policy (Stockholm, Sweden). Prof. Ren serves as board member of several scientific journals and published more than 150 papers, authored 1 book, edited more than 10 books and published more than 40 book chapters. His research focuses on process system engineering for better sustainability and mathematical models for solving energy and environmental problems and promoting sustainability transition