Atjaunināt sīkdatņu piekrišanu

E-grāmata: Micro- and Nanophotonic Technologies

, , (Université de Strasbourg (UdS))
  • Formāts: PDF+DRM
  • Sērija : Applications of Nanotechnology
  • Izdošanas datums: 20-Mar-2017
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527699933
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 164,12 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Sērija : Applications of Nanotechnology
  • Izdošanas datums: 20-Mar-2017
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527699933
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Edited and authored by leading experts from top institutions in Europe, the US and Asia, this comprehensive overview of micro- and nanophotonics covers the physical and chemical fundamentals, while clearly focusing on the technologies and applications in industrial R&D.
As such, the book reports on the four main areas of telecommunications and display technologies; light conversion and energy generation; light-based fabrication of materials; and micro- and nanophotonic devices in metrology and control.
Foreword xxiii
Preface xxv
An Overview of Micro- and Nanophotonic Science and Technology xxvii
Part One From Research to Application 1(246)
1 Nanophotonics: From Fundamental Research to Applications
3(26)
Francois Flory
Ludovic Escoubas
Judikael Le Rouzo
Gerard Berginc
1.1 Introduction
3(2)
1.2 Application of Photonic Crystals to Solar Cells
5(3)
1.3 Antireflecting Periodic Structures
8(2)
1.4 Black Silicon
10(4)
1.5 Metamaterials for Wide-Band Filtering
14(2)
1.6 Rough Surfaces with Controlled Statistics
16(3)
1.7 Enhancement of Absorption in Organic Solar Cells with Plasmonic Nano Particles
19(1)
1.8 Quantum Dot Solar Cells
20(4)
1.9 Conclusions
24(1)
Acknowledgments
24(1)
References
24(5)
2 Photonic Crystal and Plasmonic Microcavities
29(22)
Kazuaki Sakoda
2.1 Introduction
29(3)
2.2 Photonic Crystal Microcavity
32(6)
2.3 Purcell Effect
38(3)
2.3.1 Purcell Factor
38(1)
2.3.2 GaAs Quantum Dots in PC Microcavity
39(2)
2.4 Plasmonic Microcavity
41(9)
2.4.1 Enhanced MD Radiation
42(4)
2.4.2 Enhanced ED Radiation
46(1)
2.4.3 Multimode Cavity
47(3)
References
50(1)
3 Unconventional Thermal Emission from Photonic Crystals
51(14)
Hideki T. Miyazaki
3.1 Introduction
51(1)
3.2 3D Photonic Crystals
52(5)
3.3 2D Photonic Crystals
57(3)
3.4 1D Photonic Crystals
60(1)
3.5 Summary
61(1)
References
61(4)
4 Extremely Small Bending Loss of Organic Polaritonic Fibers
65(16)
Ken Takazawa
Hiroyuki Takeda
Kazuaki Sakoda
4.1 Introduction
65(1)
4.2 Exciton-Polariton Waveguiding in TC Nanofibers
66(3)
4.2.1 Synthesis and Characterization of TC Nanofibers
66(1)
4.2.2 Mechanism of Active Waveguiding in TC Nanofibers
67(2)
4.3 Miniaturized Photonic Circuit Components Constructed from TC Nanofibers
69(7)
4.3.1 Asymmetric Mach-Zehnder Interferometers
69(2)
4.3.2 Microring Resonators
71(3)
4.3.3 Microring Resonator Channel Drop Filters
74(2)
4.4 Theoretical Analysis
76(4)
4.4.1 Dispersion Relation
76(2)
4.4.2 Bending Loss
78(2)
References
80(1)
5 Plasmon Color Filters and Phase Controllers
81(22)
Yoshimasa Sugimoto
Daisuke Inoue
Takayuki Matsui
5.1 Introduction
81(1)
5.2 Optical Filter Based on Surface Plasmon Resonance
82(10)
5.2.1 Light Transmission through Hole and Slit Arrays
83(1)
5.2.1.1 Hole Arrays
83(1)
5.2.1.2 Nanoslit Arrays
85(2)
5.2.2 Fabrication and Measurement
87(2)
5.2.3 Transmission Characteristics
89(1)
5.2.3.1 Hole Arrays
89(1)
5.2.3.2 Nanoslit Arrays
91(1)
5.3 Transmission Phase Control by Stacked Metal-Dielectric Hole Array
92(7)
5.3.1 Verification of Transmission Phase Control by a Uniform SHA
93(2)
5.3.2 Numerical Study of Transition SHA for Inclined Wavefront Formation
95(1)
5.3.3 Experimental Confirmation of Uniform SHA
95(2)
5.3.4 Experimental Confirmation of Transition SHA
97(2)
5.4 Summary
99(1)
References
100(3)
6 Entangled Photon Pair Generation in Naturally Symmetric Quantum Dots Grown by Droplet Epitaxy
103(22)
Takashi Kuroda
6.1 Introduction
103(2)
6.2 Quantum Dot Photon-pair Source
105(3)
6.3 Natural Growth of Symmetric Quantum Dots
108(1)
6.4 Droplet Epitaxy of GaAs Quantum Dots on AIGaAs(1 1 1)A
109(3)
6.5 Characterization of Entanglement
112(3)
6.6 Violation of Bell's Inequality
115(3)
6.7 Quantum-state Tomography and Other Entanglement Measures
118(3)
References
121(4)
7 Single-Photon Generation from Nitrogen Isoelectronic Traps in III-V Semiconductors
125(18)
Yoshiki Sakuma
Michio Ikezawa
Liao Zhang
7.1 Introduction
125(1)
7.2 What is Isoelectronic Trap?
126(1)
7.3 GaP:N Case
127(4)
7.3.1 Macro-PL from Bulk GaP:N
127(1)
7.3.2 µ-PL of NN Pairs in delta-Doped GaP:N
127(3)
7.3.3 Single-Photon Emission from 6-Doped GaP:N
130(1)
7.4 GaAs:N Case
131(7)
7.4.1 Overview of Isoelectronic Traps in GaAs
131(1)
7.4.2 NX Centers in delta-Doped GaAs:N
132(1)
7.4.2.1 Growth Conditions and Macro-PL
132(1)
7.4.2.2 µ-PL of NX Centers and Single-Photon Emission
132(2)
7.4.3 Energy-Defined N-Related Centers in delta-Doped GaAs:N
134(1)
7.4.3.1 Growth Conditions and Macro-PL
134(1)
7.4.3.2 µ-PL of NNA and Single-Photon Emission
135(3)
7.5 Summary
138(1)
References
138(5)
8 Parity-Time Symmetry in Free Space Optics
143(50)
Bernard Kress
Mykola Kulishov
8.1 Parity-Time Symmetry in Diffractive Optics
143(5)
8.1.1 Spectral, Angular, and Polarization Selectivity
143(1)
8.1.2 Time Multiplexing: Dynamic Gratings and Holograms
144(1)
8.1.3 From Conventional Amplitude/Phase Modulations to Phase/Gain/Loss Modulations
145(1)
8.1.4 Implementation of Parity-Time Symmetry in Optics
145(1)
8.1.4.1 Thick and Thin Gratings
147(1)
8.2 Free Space Diffraction on Active Gratings with Balanced Phase and Gain/Loss Modulations
148(8)
8.2.1 Raman-Nath PT-Symmetric Diffraction
148(1)
8.2.1.1 Raman-Nath Diffraction Regime
150(1)
8.2.1.2 Intermediate and Bragg Diffraction Regimes
151(1)
8.2.1.3 Summary
155(1)
8.3 PT-Symmetric Volume Holograms in Transmission Mode
156(18)
8.3.1 Second-Order Coupled Mode Equations
157(3)
8.3.2 Two-Mode Solution for 0 = 0B
160(2)
8.3.3 Analytic Solution for Balanced PT-Symmetric Grating for Arbitrary Angle of Incidence
162(4)
8.3.4 Filled Space PT-Symmetric Grating
166(1)
8.3.5 Symmetric Slab Configuration
167(1)
8.3.6 Asymmetric Slab Configurations
168(1)
8.3.6.1 Light Incident from the Substrate Side: epsilon3 = 1
168(1)
8.3.6.2 Light Incident from the Air: epsilon1 = 1
170(1)
8.3.6.3 Reflective Setup
170(1)
8.3.7 Discussion
171(3)
8.4 Analysis of Unidirectional Nonparaxial Invisibility of Purely Reflective PT-Symmetric Volume Gratings
174(15)
8.4.1 Introduction
174(1)
8.4.2 Analytic Solution for First Three Bragg Orders for a Balanced PT-Symmetric Grating
174(3)
8.4.3 Zeroth Diffractive Orders in Transmission and Reflection
177(1)
8.4.4 Higher Diffractive Orders
178(1)
8.4.4.1 First Diffraction Orders
178(1)
8.4.4.2 Second Diffraction Orders
179(1)
8.4.5 Filled Space PT-Symmetric Gratings
180(1)
8.4.5.1 Filled Space PT-Symmetric Grating Implies epsilon1 = epsilon2 = epsilon3
180(5)
8.4.6 Reflective PT-Symmetric Gratings with Fresnel Reflections
185(1)
8.4.6.1 Symmetric Geometry epsilon1 = epsilon3 = 1; epsilon2 = 2.4
185(1)
8.4.6.2 Asymmetric Slab Configuration
186(3)
8.5 Summary and Conclusions
189(2)
References
191(2)
9 Parity-Time Symmetric Cavities: Intrinsically Single-Mode Lasing
193(40)
Mykola Kulishov
Bernard Kress
9.1 Introduction
193(1)
9.2 Resonant Cavities Based on two PT-Symmetric Diffractive Gratings
194(10)
9.2.1 PT-Symmetric Bragg Grating
194(1)
9.2.2 Concatenation of Two Gratings
195(7)
9.2.3 Temporal Characteristics
202(2)
9.2.4 Summary
204(1)
9.3 Distributed Bragg Reflector Structures Based on PT-Symmetric Coupling with Lowest Possible Lasing Threshold
204(11)
9.3.1 Grating-Assisted Codirectional Coupler with PT Symmetry
205(3)
9.3.2 Threshold Condition in DBR Lasers
208(1)
9.3.3 DBR Lasers with PT-Symmetrical GACC Output
209(1)
9.3.4 Transfer Matrix Description of the DBR Structure with PT-Symmetrical GACC Output
210(5)
9.4 Unique Optical Characteristics of a Fabry-Perot Resonator with Embedded PT-Symmetrical Grating
215(15)
9.4.1 Transfer Matrix for Fabry-Perot Cavity with a Single PT-SBG
216(4)
9.4.2 Absorption and Amplification Modes along with Lasing Characteristics
220(1)
9.4.2.1 Fully Constructive Cavity Interaction
220(1)
9.4.2.2 Partially Constructive Cavity Interaction
223(1)
9.4.2.3 Partially Destructive Cavity Interaction
228(1)
9.4.2.4 Fully Destructive Cavity Interaction
230(1)
9.5 Summary and Conclusions
230(1)
References
231(2)
10 Silicon Quantum Dot Composites for Nanophotonics
233(14)
Hiroshi Sugimoto
Minoru Fujii
10.1 Introduction
233(1)
10.2 Core-Shell Type Nanocomposites
234(5)
10.3 Polymer Encapsulation
239(2)
10.4 Micelle Encapsulation
241(2)
10.5 Summary
243(1)
Acknowledgments
243(1)
References
243(4)
Part Two Breakthrough Applications 247(284)
11 Ultrathin Polarizers and Waveplates Made of Metamaterials
249(20)
Masanobu Iwanaga
11.1 Concept and Practice of Subwavelength Optical Devices
249(5)
11.1.1 Conceptual Classification of Polarization-Controlling Optical Devices
249(1)
11.1.2 Construction of Optical Devices Using Jones Matrices
250(2)
11.1.3 UV NIL
252(2)
11.2 Ultrathin Polarizers
254(4)
11.3 Ultrathin Waveplates
258(6)
11.3.1 Ultrathin Waveplates Made of Stratified Metal-Dielectric MMs
259(3)
11.3.2 Ultrathin Waveplates of Other Structures
262(2)
11.4 Constructions of Functional Subwavelength Devices
264(3)
11.5 Summary and Prospects
267(1)
Acknowledgments
267(1)
References
267(2)
12 Nanoimprint Lithography for the Fabrication of Metallic Metasurfaces
269(22)
Yoshimasa Sugimoto
Masanobu Iwanaga
Hideki T. Miyazaki
12.1 Introduction
269(1)
12.2 UV-NIL
270(3)
12.3 Large-Area SP-RGB Color Filter Using UV-NIL
273(5)
12.3.1 Introduction
273(1)
12.3.2 Device Design
274(1)
12.3.3 Device Fabrication and Transmission Characteristics
275(3)
12.4 Emission-Enhanced Plasmonic Metasurfaces Fabricated by NIL
278(4)
12.4.1 Introduction
278(1)
12.4.2 SC-P1C Structure
279(1)
12.4.3 Fabrication and Optical Characterization of SC-PlC
279(3)
12.5 Metasurface Thermal Emitters for Infrared CO2 Detection by UV-NIL
282(3)
12.5.1 Introduction
282(1)
12.5.2 Metasurface Design
282(1)
12.5.3 Device Fabrication and Optical Properties
283(2)
12.6 Summary
285(2)
References
287(4)
13 Applications to Optical Communication
291(42)
Philippe Gallion
13.1 Introduction
291(3)
13.2 Optical Fiber and Propagation Impairments
294(11)
13.2.1 Guiding Necessity
294(1)
13.2.2 Multimode and Single-Mode Fibers
295(2)
13.2.3 Rayleigh Diffusion as the Limiting Factor for Optical Fiber Attenuation
297(1)
13.2.4 A Huge Available Bandwidth Resource
298(1)
13.2.5 dispersions as the bit-rate limitations
299(1)
13.2.5.1 Group Velocity Dispersion
299(1)
13.2.5.2 Polarization Mode Dispersion
299(1)
13.2.5.3 bit-rate limitations
301(1)
13.2.5.4 Overcoming the Dispersion Limitations
302(1)
13.2.6 Fiber Nonlinearity
302(2)
13.2.7 New Fiber Materials and Structures
304(1)
13.3 Basics of Functional Devices
305(10)
13.3.1 Optical Sources
305(1)
13.3.1.1 Light Emission in Semiconductor
305(1)
13.3.1.2 Semiconductor Laser Single-Mode Operation
306(1)
13.3.1.3 Interband Dynamics as Direct Modulation Limitation
308(1)
13.3.1.4 Optical Frequency Chirping
308(1)
13.3.1.5 Optical Frequency Tuning
309(1)
13.3.1.6 Quantum Phase Diffusion and Linewidth
309(1)
13.3.2 External Modulation
310(1)
13.3.2.1 Electroabsorption Modulation
310(1)
13.3.2.2 Electro-Optic Modulation
310(1)
13.3.3 Optical Amplification
311(1)
13.3.3.1 Needs of Optical Amplification
311(1)
13.3.3.2 Today's Optical Amplifier Technologies
311(1)
13.3.3.3 Heisenberg Indetermination and Quantum Noise
312(1)
13.3.3.4 Spontaneous Emission Noise Description
313(1)
13.3.3.5 Optical Amplifier Noise Figure
313(1)
13.3.3.6 Noise in Cascaded Amplifications
313(1)
13.3.4 Interfacing the Optical and the Electronics Domains
314(1)
13.3.5 Module Packaging
314(1)
13.4 Advanced Optical Communication Techniques
315(4)
13.4.1 Managing the Color and Wavelength Division Multiplexing
315(1)
13.4.2 Coherent Optical Communication
316(1)
13.4.2.1 Coherent Optical Receiver
316(1)
13.4.2.2 Quadrature Amplitude Modulations
317(1)
13.4.3 Digital Communication and Signal Processing Techniques
318(1)
13.5 Today's Optical Communication Systems
319(4)
13.5.1 The Conquest of Submarine and Terrestrial Communication Infrastructures
319(1)
13.5.2 Optical Fiber at Our Door
320(1)
13.5.2.1 The Last-Mile Problem
320(1)
13.5.2.2 Optical Connection to the End Users
320(2)
13.5.3 Optical Wireless and Free Space Communications
322(1)
13.5.4 Quantum Cryptography
322(1)
13.6 Conclusions: Today's Challenges and Perspectives
323(3)
Acknowledgments
326(1)
List of Acronyms and Abbreviations
326(2)
References
328(5)
14 Advanced Concepts for Solar Energy
333(22)
Mikael Hosatte
14.1 Introduction
333(1)
14.2 Photon Management
334(5)
14.2.1 Antireflection Techniques
334(3)
14.2.2 Light Trapping
337(2)
14.3 Spectral Optimization
339(4)
14.3.1 Upconversion/Downconversion
339(1)
14.3.2 Tandem Cells
340(3)
14.4 Advanced Concepts
343(6)
14.4.1 Third-Generation Concepts
343(1)
14.4.2 Multiple Energy Level Solar Cells
344(1)
14.4.3 Multiple Exciton Generation
345(3)
14.4.4 Hot Carrier Solar Cells
348(1)
14.4.5 Comparison of the Approaches
349(1)
14.5 Conclusions
349(1)
References
350(5)
15 The Micro- and Nanoinvestigation and Control of Physical Processes Using Optical Fiber Sensors and Numerical Simulations: a Mathematical Approach
355(28)
Adrian Neculae
Dan Curticapean
15.1 Introduction
355(5)
15.2 Temperature Measurement and Heat Transfer Evaluation in a Circular Cylinder by Considering a High Accurate Numerical Solution
360(12)
15.2.1 Theoretical Background
361(5)
15.2.2 Numerical Results for Conductive Transport
366(4)
15.2.3 The SP1 Approximation Model
370(1)
15.2.4 Numerical Results for the SP1 Model
370(2)
15.3 Numerical Analysis of the Diffusive Mass Transport in Brain Tissues with Applications to Optical Sensors
372(8)
15.3.1 Theoretical Background
373(2)
15.3.2 Numerical Results
375(5)
Acknowledgment
380(1)
References
380(3)
16 Laser Micronanofabrication
383(20)
Sylvain Lecler
Joel J. Fontaine
Frederic Mermet
16.1 Introduction
383(1)
16.2 Physical Issues
384(3)
16.2.1 The Laser Mean Power
385(1)
16.2.2 The Wavelength
385(1)
16.2.3 Pulse Duration and Repetition Rate
385(1)
16.2.4 Spatial Concentration and Beam Shaping
385(1)
16.2.5 Material Response
386(1)
16.3 Recent Technological Advances
387(5)
16.3.1 Femtosecond Laser
387(1)
16.3.2 Nondivergent Subwavelength Beams
388(1)
16.3.3 Subwavelength Focusing of Light with Photonic Nanojet
389(1)
16.3.4 Subwavelength Deposition by LIFT Technique
389(3)
16.4 Laser Microprocesses
392(7)
16.4.1 Material Deposition and Thin-Layer Control
392(1)
16.4.2 Nanoparticle Fabrication
392(1)
16.4.3 Microdrilling
393(1)
16.4.4 Microcutting
393(2)
16.4.5 Laser Microwelding
395(1)
16.4.6 Surface Texturing
396(1)
16.4.7 Additive Manufacturing
397(2)
16.4.8 Waveguide Writing
399(1)
16.5 Conclusions
399(1)
References
400(3)
17 Ultrarealistic Imaging Based on Nanoparticle Recording Materials
403(22)
Hans I. Bjelkhagen
17.1 Introduction
403(4)
17.1.1 Demands on a Holographic Emulsion
404(1)
17.1.2 Silver Halide Emulsion Light Scattering
405(1)
17.1.3 History of Ultrafine-grain Silver Halide Emulsions
406(1)
17.2 Preperation of Silver Hailde Emulsions: Principle
407(6)
17.2.1 General Description of the Photographic Emulsion Making Process
407(1)
17.2.2 The Specification for the SilverCross Ultrafine-grain Emulsion
408(1)
17.2.3 The Fabrication of a Basic Ultrafine-Grain Emulsion
409(1)
17.2.3.1 Gelatin Concentration
410(1)
17.2.3.2 Silver and Halide Concentrations
410(1)
17.2.3.3 Silver to Halide Ratio
410(1)
17.2.3.4 Jetting Methods and Jetting Time
410(1)
17.2.3.5 Solution Temperatures
411(1)
17.2.3.6 Concentration and Removal of Reaction By-products
411(1)
17.2.3.7 Coating
412(1)
17.3 Testing of the Emulsion
413(4)
17.3.1 Sensitometric Tests
413(1)
17.3.2 Color Holography Tests
414(3)
17.4 Recording Museum Artifacts with Color Holography
417(4)
17.4.1 Recording Holograms of Museum Artifacts
418(1)
17.4.2 Holographic Recordings with Mobile Equipment
418(3)
17.5 Conclusions
421(1)
Acknowledgments
421(1)
References
422(3)
18 An Introduction to Tomographic Diffractive Microscopy: Toward High-Speed Quantitative Imaging Beyond the Abbe Limit
425(18)
Jonathan Bailleul
Bertrand Simon
Matthieu Debailleul
Olivier Haeberle
18.1 Introduction
425(1)
18.2 Conventional Transmission Microscopy
426(5)
18.2.1 Transmission Microscopy and Kohler Illumination
426(2)
18.2.2 Dark-Field Microscopy
428(1)
18.2.3 Phase-Contrast Microscopy
429(2)
18.3 Phase Amplitude Microscopy
431(2)
18.3.1 Digital Holography
432(1)
18.3.2 Wavefront Analyzer
433(1)
18.4 Tomographic Diffractive Microscopy for True 3D Imaging
433(5)
18.4.1 Limits of Phase Microscopy
433(1)
18.4.2 Tomography by Illumination Variation
434(2)
18.4.3 Tomography by Specimen Rotation
436(2)
18.5 Biological Applications
438(1)
18.6 Conclusions
439(1)
References
439(4)
19 Nanoplasmonic Guided Optic Hydrogen Sensor
443(28)
Nicolas Javahiraly
Cedric Perrotton
19.1 Introduction
443(5)
19.2 Fiber Optic Sensor
448(3)
19.3 Pd Hydrogen Sensing Systems
451(4)
19.3.1 Bulk Palladium Film
451(2)
19.3.2 Thin Pd Film
453(1)
19.3.3 Metal Properties upon Hydrogenation
454(1)
19.4 Fiber Optic Hydrogen Sensors
455(2)
19.5 Fiber Surface Plasmon Resonance Sensor
457(3)
19.6 Sensitive Material for Hydrogen Sensing
460(4)
19.6.1 Pd Alloys
460(1)
19.6.2 Metal Hydrides and Rare-Earth Materials
461(1)
19.6.3 Tungsten Oxide
462(2)
19.7 Conclusions
464(2)
Acknowledgment
466(1)
References
466(5)
20 Fiber Optic Liquid-Level Sensor System for Aerospace Applications
471(18)
Alex A. Kazemi
Chengning Yang
Shiping Chen
20.1 Introduction
471(1)
20.2 The Operation Principle and System Design
472(6)
20.2.1 Optical Fiber Long-Period Gratings
472(2)
20.2.2 Optical Time Domain Reflectometer
474(1)
20.2.3 Total Internal Reflection
474(1)
20.2.4 LPG Sensor Liquid-Level System
475(1)
20.2.5 TIR-Based Liquid-Level Detection System
476(2)
20.3 Experimental Results
478(7)
20.4 Liquid-Level Sensor Performance
485(1)
20.5 Conclusions
486(1)
References
487(2)
21 Tunable Micropatterned Colloid Crystal Lasers
489(18)
Seiichi Furumi
Hiroshi Fudouzi
Tsutomu Sawada
21.1 Introduction
489(4)
21.2 Synthesis of Colloidal Microparticles and Reflection Features of CCs
493(2)
21.3 Laser Action from CCs with Light-Emitting Planar Defects
495(3)
21.4 Micropatterned Laser Action from CCs by Photochromic Reaction
498(1)
21.5 Tunable Laser Action from CC Gel Films Stabilized by Ionic Liquid
498(5)
21.6 Conclusions and Outlook
503(1)
Acknowledgments
504(1)
References
504(3)
22 Colloidal Photonic Crystals Made of Soft Materials: Gels and Elastomers
507(20)
Hiroshi Fudouzi
Tsutomu Sawada
22.1 Introduction
507(1)
22.2 Colloidal Photonic Crystal Gels Consist of Nonclose-packed Particles
508(7)
22.2.1 Highly Oriented Colloidal Photonic Crystals by Shear-Flow Effect
508(2)
22.2.2 Structural Characterization of Crystals Oriented by Shear Flow
510(5)
22.3 Colloidal Photonic Crystal Elastomer Consists of Close-packed Particles
515(5)
22.3.1 A Uniaxially Oriented Opal Film by Crystal Growth under Silicone Liquid
515(3)
22.3.2 Colloidal Photonic Crystal Elastomer Film Coated on a Rubber Sheet
518(2)
22.4 Applications
520(3)
22.4.1 Colloidal Photonic Crystal Gels
520(1)
22.4.2 Colloidal Photonic Crystal Elastomers
521(2)
22.5 Summary and Outlook
523(1)
References
524(3)
23 Surveying the Landscape and the Prospects in Nanophotonics
527(4)
David L. Andrews
Patrick L. Meyrueis
Marcel Van de Voorde
23.1 Retrospective
527(1)
23.2 Fundamental Developments
527(1)
23.3 Futorology
528(1)
23.4 Applications
529(1)
23.5 Summing Up
529(2)
Index 531
Patrick Meyrueis is Emeritus Professor of Physics at the University of Strasbourg, France. He started his career as an engineer of the French Department of Industry and took up a position as Associate Professor at the University Louis Pasteur (now University of Strasbourg) in 1981 where he founded the Photonics Group, which he headed until 1987. He then moved on to become founder and head of the Photonics System Laboratory which was one of the most advanced labs in the field of planar digital optics (now Icube Institute). Patrick Meyrueis is the author of more than 200 publications, 100 patents and several books. He was the chairman of more than 20 international conferences in photonics.

Kazuaki Sakoda is Professor in the Graduate School of Pure and Applied Sciences at Tsukuba University, Japan, and Managing Researcher of the Research Center for Functional Materials at the National Institute of Materials Science (NIMS). After his BE and ME degrees, obtained from Tokyo University, he worked as Senior Researcher at TORAY Industries, Inc. for eleven years. Kazuaki Sakoda received his PhD in Applied Physics from Tokyo University in 1992 and continued his academic career as Associate Professor in the Research Institute for Electronic Science at Hokkaido University before taking up his current positions.

Marcel Van de Voorde has 40 years' experience in European Research Organisations including CERN-Geneva, European Commission, with 10 years at the Max Planck Institute in Stuttgart, Germany. For many years, he was involved in research and research strategies, policy and management, especially in European research institutions. He holds a Professorship at the University of Technology in Delft, the Netherland, as well as multiple visiting professorships in Europe and worldwide. He holds a doctor honoris causa and various honorary Professorships. He is senator of the European Academy for Sciences and Arts, in Salzburg and Fellow of the World Academy for Sciences. He is a Fellow of various scientific societies and has been decorated by the Belgian King. He has authored of multiple scientific and technical publications and co-edited multiple books in the field of nanoscience and nanotechnology.