Atjaunināt sīkdatņu piekrišanu

E-grāmata: MicroMechatronics, Second Edition

  • Formāts: 584 pages
  • Izdošanas datums: 19-Jul-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9780429535925
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 584 pages
  • Izdošanas datums: 19-Jul-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9780429535925
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

After Uchino’s introduction of a new terminology, ‘Micromechatronics’ in 1979 for describing the application area of ‘piezoelectric actuators’, the rapid advances in semiconductor chip technology have led to a new terminology MEMS
(micro-electro-mechanical-system) or even NEMS (nano-electro-mechanicalsystem) to describe mainly thin film sensor/actuator devices, a narrower area of micromechatronics coverage. New technologies, product developments and commercialization are providing the necessity of this major revision. In particular, the progresses in high power transducers, loss mechanisms in smart materials, energy harvesting and computer simulations are significant.

  • New technologies, product developments and commercialization are providing
    the updating requirement for the book contents, in parallel to the deletion of old
    contents.
  • Various educational/instructional example problems have been accumulated, which were integrated in the new edition in order to facilitate the self-learning for the students, and the quiz/problem creation for the
    instructors.
  • Heavily revised topics from the previous edition include: high power transducers, loss mechanisms in smart
    materials, energy harvesting and computer simulations
  • New technologies, product developments and commercialization helped shape the updated contents of this book where all chapters have been updated and revised.
  • This textbook is intended for graduate students and industrial engineers studying or
    working in the fields of electronic materials, control system engineering, optical
    communications, precision machinery, and robotics. The text is designed primarily
    for a graduate course with the equivalent of thirty 75-minute lectures; however, it is
    also suitable for self-study by individuals wishing to extend their knowledge in the
    field.


Uchino presents in this updated Second Edition, a theoretical description of solid-state actuators, an overview of practical materials, device designs, drive/control techniques, and typical applications, as we consider current and future trends in the field of micromechatronics.
Second Edition Preface xv
First Edition Preface xvii
Author xix
List of Symbols
xxi
Suggested Teaching Schedule xxiii
Prerequisite Knowledge Check xxv
Answers xxvii
Chapter 1 Current Trends for Actuators and Micromechatronics
1(36)
1.1 The Need for New Actuators
1(3)
1.2 Conventional Methods for Positioning
4(2)
1.2.1 Oil Pressure Type Displacement Reduction Mechanism
5(1)
1.2.2 Pure Mechanical Displacement Reduction Mechanism
6(1)
1.3 An Overview of Solid-State Actuators
6(25)
1.3.1 Microelectromagnetic Motors
7(1)
1.3.2 Micro-Electro-Mechanical-Systems
8(2)
1.3.3 Artificial Muscle
10(3)
1.3.4 Smart Actuators
13(4)
1.3.5 Shape Memory Alloys
17(3)
1.3.6 Magnetostrictive Actuators
20(2)
1.3.7 Piezoelectric/Electrostrictive Actuators
22(3)
1.3.8 Photo-Driven Actuators
25(2)
1.3.9 Electro/Magnetorheological Fluids
27(2)
1.3.10 Bio Actuators
29(1)
1.3.11 Comparison among Solid-State Actuators
30(1)
1.4 Structure of the Text
31(6)
Chapter Essentials
32(1)
Check Point
33(1)
Chapter Problems
34(1)
References
35(2)
Chapter 2 A Theoretical Description of Piezoelectricity
37(88)
2.1 Ferroelectricity
37(7)
2.1.1 Crystal Structure and Ferroelectricity
37(1)
2.1.2 Origin of Spontaneous Polarization
38(3)
2.1.3 Physical Properties of Ferroelectrics
41(3)
2.2 Microscopic Origins of Electric Field---Induced Strains
44(1)
2.3 Tensor/Matrix Description of Piezoelectricity
45(13)
2.3.1 Tensor Representation
45(1)
2.3.2 Crystal Symmetry and Tensor Form
46(1)
2.3.3 Matrix Notation
47(11)
2.4 Theory of Ferroelectric Phenomenology
58(27)
2.4.1 Background of Phenomenology
58(1)
2.4.1.1 Polarization Expansion
58(1)
2.4.1.2 Temperature Expansion
58(1)
2.4.1.3 Stress Expansion
59(1)
2.4.2 Landau Theory of the Ferroelectric Phase Transition
59(1)
2.4.2.1 The Second-Order Transition
60(1)
2.4.2.2 The First-Order Transition
61(3)
2.4.3 Phenomenological Description of Electrostriction
64(3)
2.4.4 Converse Effects of Electrostriction
67(1)
2.4.5 Temperature Dependence of Electrostriction
68(1)
2.4.6 Electromechanical Coupling Factor
68(1)
2.4.6.1 Piezoelectric Constitutive Equations
68(1)
2.4.6.2 Electromechanical Coupling Factor
69(5)
2.4.6.3 Intensive and Extensive Parameters
74(4)
2.4.7 Crystal Orientation Dependence of Piezoelectricity
78(4)
2.4.8 Phenomenology of Antiferroelectrics
82(3)
2.5 Phenomenology of Magnetostriction
85(2)
2.6 Ferroelectric Domain Reorientation
87(11)
2.6.1 Domain Formation
87(4)
2.6.2 Strains Accompanied by Ferroelectric Domain Reorientation
91(2)
2.6.3 The Uchida-Ikeda Model
93(4)
2.6.4 Crystal Structures and Coercive Fields
97(1)
2.7 Loss Mechanisms in Piezoelectrics
98(12)
2.7.1 Loss Phenomenology in Piezoelectrics
98(7)
2.7.2 Loss Measurement Technique---Pseudostatic Method
105(1)
2.7.3 Heat Generation at Off-Resonance
105(3)
2.7.4 Microscopic Origins of Extensive Losses
108(2)
2.8 Piezoelectric Resonance
110(15)
2.8.1 k31 Longitudinal Vibration Mode
110(1)
2.8.1.1 Piezoelectric Dynamic Equation
110(4)
2.8.1.2 Admittance around Resonance and Antiresonance
114(1)
2.8.1.3 Resonance and Antiresonance Vibration Modes
115(1)
2.8.2 k33 Longitudinal Vibration Mode
115(1)
2.8.2.1 Piezoelectric Dynamic Equation
115(2)
2.8.2.2 Boundary Condition: E-Constant vs. D-Constant
117(1)
2.8.3 Admittance/Impedance Spectrum Characterization Method
118(2)
Chapter Essentials
120(1)
Check Point
121(1)
Chapter Problems
122(2)
References
124(1)
Chapter 3 Actuator Materials
125(86)
3.1 History of Actuator Materials
125(3)
3.1.1 Piezoelectric Materials
125(1)
3.1.2 Shape Memory Alloys
126(1)
3.1.3 Magnetostrictive Alloys
126(2)
3.2 Figures of Merit for Transducers
128(9)
3.2.1 The Piezoelectric/Piezomagnetic Coefficients
129(1)
3.2.2 The Electromechanical Coupling Factor, k, and Related Quantities
130(1)
3.2.2.1 The Electromechanical Coupling Factor (k)
130(1)
3.2.2.2 The Energy Transmission Coefficient (λmax)
130(4)
3.2.2.3 Efficiency η
134(1)
3.2.3 Mechanical Quality Factor, QM
134(1)
3.2.4 Acoustic Impedance, Z
135(1)
3.2.5 Maximum Vibration Velocity, νmax
136(1)
3.3 Piezoelectric Transducer Materials
137(16)
3.3.1 Practical Piezoelectric/Electrostrictive Materials
138(1)
3.3.1.1 Quartz, Lithium Niobate/Tantalate Single Crystals
138(1)
3.3.1.2 Perovskite BaTiO3, Lead Zirconate Titanate Piezoelectrics
139(4)
3.3.1.3 Complex Perovskite Relaxor Ferroelectrics
143(6)
3.3.1.4 Pb-Free Piezoelectrics
149(3)
3.3.2 Antiferro- to Ferroelectric Phase-Change Ceramics
152(1)
3.3.3 Piezoelectric Polymers
152(1)
3.4 Reliability Issues of Actuator Materials
153(20)
3.4.1 Temperature Stability in Field-Induced Strain
153(1)
3.4.1.1 Macroscopic Composite Method
154(1)
3.4.1.2 Microscopic Approach
154(2)
3.4.2 Response Speed of Actuators
156(1)
3.4.2.1 Material Restrictions
156(1)
3.4.2.2 Device Restriction
157(2)
3.4.2.3 Drive Circuit Limitation
159(1)
3.4.3 Mechanical Properties of Actuators
159(1)
3.4.3.1 Uniaxial Stress Dependence of Piezoelectric/Electrostrictive Strains
159(2)
3.4.3.2 Mechanical Strength
161(8)
3.4.3.3 Acoustic Emission in Piezoelectrics
169(4)
3.5 High-Power Piezoelectrics
173(27)
3.5.1 Loss and Mechanical Quality Factor Relations
175(1)
3.5.1.1 Loss and Mechanical Quality Factor in k31 Mode
175(3)
3.5.1.2 Loss and Mechanical Quality Factor in Other Modes
178(4)
3.5.2 Heat Generation under Resonance Conditions
182(1)
3.5.2.1 Vibration Velocity versus Mechanical Quality Factor, Qm
182(1)
3.5.2.2 Heat Generation under Resonance Conditions
183(3)
3.5.3 Composition Dependence of High-Power Performances
186(1)
3.5.3.1 Lead Zirconate Titanate---Based Ceramics
186(2)
3.5.3.2 Pb-Free Piezoelectrics
188(2)
3.5.4 Doping Effect on Piezoelectric Losses
190(1)
3.5.4.1 Hard and Soft Lead Zirconate Titanates
190(2)
3.5.4.2 Dipole Alignment Models
192(5)
3.5.5 Grain Size Effect on Hysteresis and Losses
197(1)
3.5.6 Loss Anisotropy: Crystal Orientation Dependence of Losses
198(1)
3.5.6.1 Loss Anisotropy in Lead Zirconate Titanate
198(2)
3.5.6.2 Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystal
200(1)
3.6 High Power Magnetostrictors
200(11)
3.6.1 Piezomagnetic Loss Equations
200(2)
3.6.2 Impedance Spectrum Measurement
202(1)
Chapter Essentials
203(2)
Checkpoint
205(1)
Chapter Problems
206(1)
References
206(5)
Chapter 4 Ceramic Fabrication Methods and Actuator Designs
211(56)
4.1 Fabrication Processes of Ceramics and Single Crystals
211(7)
4.1.1 Preparation of the Ceramic Powders
211(1)
4.1.1.1 Solid-State Reaction (Mixed-Oxide Method)
211(1)
4.1.1.2 The Co-Precipitation Method
212(1)
4.1.1.3 Alkoxide Hydrolysis
213(1)
4.1.2 The Sintering Process
214(2)
4.1.3 Single Crystal Growth
216(1)
4.1.3.1 Quartz, LN, LT
216(1)
4.1.3.2 Pb(Zn1/3Nb2/3)O3-PbTiO3, Pb(Mg1/3Nb2/3)O3-PbTiO3
216(1)
4.1.3.3 Pb(Zr1-xTix)O3
216(1)
4.1.4 Templated Grain Growth
217(1)
4.2 Size Effect of Ferroelectricity
218(5)
4.2.1 Grain Size Effect on Ferroelectricity
218(1)
4.2.2 3D Particle Size Effect on Ferroelectricity
219(4)
4.3 Actuator/Device Design
223(21)
4.3.1 Disk Actuators
224(1)
4.3.2 Multilayer Actuators
225(7)
4.3.3 Cylindrical Devices
232(1)
4.3.4 Unimorph/Bimorph/Monomorph
233(1)
4.3.4.1 Unimorph/Bimorph
233(5)
4.3.4.2 Monomorph/Rainbow
238(2)
4.3.5 Flextension/Hinge Lever Amplification Mechanisms
240(1)
4.3.5.1 Displacement Amplification Mechanism
240(2)
4.3.5.2 Moonie/Cymbal
242(1)
4.3.6 Flexible Composites
242(2)
4.4 Electrode Materials
244(8)
4.4.1 Actuator Electrodes: An Overview
244(1)
4.4.2 Ag-Based Electrodes
245(2)
4.4.3 Base Metal Electrodes
247(2)
4.4.4 Ceramic Electrodes
249(1)
4.4.4.1 Ceramic Electrode
249(1)
4.4.4.2 BaTiO3-Based Multilayer Actuator
249(1)
4.4.4.3 Mechanical Strength of Ceramic Electrode Devices
250(2)
4.5 Piezoelectric Thin/Thick Films and Micro-Electro-Mechanical-Systems
252(15)
4.5.1 Piezoelectric Thin Films
252(1)
4.5.1.1 Thin Film Fabrication Techniques
252(1)
4.5.1.2 Orientation Dependence of Piezoelectric Performances
253(1)
4.5.1.3 Thickness Dependence of Physical Performance
254(2)
4.5.1.4 Constraints in Thin Films
256(1)
4.5.2 Piezoelectric Thick Films
257(1)
4.5.3 Piezoelectric Micro-Electro-Mechanical-Systems
257(3)
Chapter Essentials
260(2)
Check Point
262(1)
Chapter Problems
262(2)
References
264(3)
Chapter 5 Drive/Control Techniques for Piezoelectric Actuators
267(92)
5.1 Classification of Piezoelectric Actuators
267(2)
5.2 High Power Characterization System
269(17)
5.2.1 Loss Measuring Technique I: Pseudostatic Method
270(1)
5.2.2 Loss Measuring Technique II: Admittance Spectrum Method
270(1)
5.2.2.1 Constant Voltage Drive: Gen I (1980s)
270(1)
5.2.2.2 Constant Current Drive: Gen II (1990s)
271(1)
5.2.2.3 Constant Vibration Velocity Method: Gen III (2000s)
272(4)
5.2.2.4 Real Electric Power Method: Gen V (2010s)
276(1)
5.2.2.5 Determination Methods of the Mechanical Quality Factor
276(2)
5.2.3 Loss Measuring Technique III: Transient/Burst Drive Method
278(1)
5.2.3.1 Pulse Drive Method
278(1)
5.2.3.2 Burst Mode Method: Gen IV (2010s)
279(7)
5.3 Feedback Control
286(18)
5.3.1 The Laplace Transform
286(3)
5.3.2 The Transfer Function
289(1)
5.3.2.1 Transfer Function of a Piezoelectric Actuator
289(2)
5.3.2.2 Transfer Functions of a Position Sensor/Differential Amplifier
291(1)
5.3.2.3 Block Diagram
292(1)
5.3.3 Criterion for System Stability
293(1)
5.3.3.1 Characteristic Equation
293(1)
5.3.3.2 The Nyquist Criterion for Stability
294(1)
5.3.4 Steady-State Error
295(2)
5.3.5 Advantages of Feedback Control
297(1)
5.3.5.1 Linear Relation between Input and Output
297(2)
5.3.5.2 Output Response with a Flat Frequency Dependence
299(1)
5.3.5.3 Minimization of External Disturbance Effects
299(5)
5.3.6 Polarization Control Method
304(1)
5.4 Pulse Drive
304(18)
5.4.1 The Piezoelectric Equations and Vibration Modes
305(1)
5.4.1.1 Piezoelectric Constitutive Equations
305(1)
5.4.1.2 Longitudinal Vibration Mode via Transverse Piezoelectric Effect (k31 Mode)
306(2)
5.4.1.3 Longitudinal Vibration Mode via Longitudinal Piezoelectric Effect (k33 Mode)
308(1)
5.4.1.4 Other Vibration Modes
309(1)
5.4.2 Consideration of the Loss
310(1)
5.4.3 Pulse Drive on the k31 Mode Specimen
310(1)
5.4.3.1 General Solution for Longitudinal Vibration k31 Mode
310(2)
5.4.3.2 Displacement Response to a Step Voltage
312(3)
5.4.3.3 Displacement Response to Pulse Drive
315(2)
5.4.3.4 Displacement Response to Pseudo-Step Drive
317(2)
5.4.3.5 Consideration of the Loss in Transient Response
319(1)
5.4.4 Pulse Width Modulation Method
320(2)
5.5 Resonance Drive
322(11)
5.5.1 Piezoelectric Resonance: Reconsideration
322(2)
5.5.2 Equivalent Circuits for Piezoelectric Vibrators
324(1)
5.5.2.1 Equivalency between Mechanical and Electrical Systems
324(1)
5.5.2.2 Equivalent Circuit (Loss-Free) of the k31 Mode
325(2)
5.5.2.3 Equivalent Circuit (with Losses) of k31 Mode
327(6)
5.5.2.4 Equivalent Circuit of k33 Mode
333(1)
5.6 Position/Force Sensors
333(5)
5.6.1 Position Sensors
334(1)
5.6.1.1 Resistance Methods
334(1)
5.6.1.2 Electromagnetic Induction Methods
335(1)
5.6.1.3 Capacitance Methods
335(1)
5.6.1.4 Optical Methods
336(1)
5.6.2 Stress Sensors
336(2)
5.7 Power Supply/Drive Scheme
338(21)
5.7.1 Power Supply Specifications
338(1)
5.7.2 Drive/Control Schemes of Piezoelectric Actuators
339(1)
5.7.2.1 Off-Resonance (Capacitive) Drive
340(1)
5.7.2.2 Resonance/Antiresonance (Resistive) Drive
341(1)
5.7.2.3 Power Minimization (Reactive) Drive
342(1)
5.7.3 Fundamental Circuit Components
343(1)
5.7.3.1 Switching Regulator
343(3)
5.7.3.2 On-Off Signal Generator
346(1)
5.7.3.3 Piezoelectric Transformer
346(5)
Chapter Essentials
351(1)
Check Point
352(1)
Chapter Problems
353(3)
References
356(3)
Chapter 6 Computer Simulation of Piezoelectric Devices
359(28)
6.1 ATILA Finite-Element Method Software Code
359(19)
6.1.1 Finite-Element Method Fundamentals
359(1)
6.1.1.1 Domain and Finite Elements
359(1)
6.1.1.2 Defining the Equations for the Problem
360(2)
6.1.1.3 The Variational Principle
362(1)
6.1.2 Application of Finite-Element Method
362(1)
6.1.2.1 Discretization of the Domain
362(1)
6.1.2.2 Shape Functions
363(3)
6.1.2.3 Parent Elements
366(3)
6.1.2.4 Discretization of the Variational Form
369(2)
6.1.2.5 Assembly
371(1)
6.1.2.6 Computation
372(1)
6.1.3 ATILA Simulation Examples
373(1)
6.1.3.1 k31 Resonance/Antiresonance Modes
373(1)
6.1.3.2 Stress Concentration in a Multilayer Actuator
374(1)
6.1.3.3 Metal Tube Motor
375(1)
6.1.3.4 Piezoelectric Transformer
376(2)
6.2 PSpice Circuit Analysis Software
378(4)
6.2.1 k31-Type Piezoplate Simulation with Institute of Electrical and Electronics Engineers Equivalent Circuit
378(2)
6.2.2 k31 Piezoplate Equivalent Circuit Simulation with Three Losses
380(2)
6.3 Summary
382(5)
Chapter Essentials
382(1)
Check Point
383(1)
Chapter Problems
384(1)
References
384(3)
Chapter 7 Piezoelectric Energy-Harvesting Systems
387(32)
7.1 Background
387(14)
7.1.1 Necessity of Piezoelectric Energy Harvesting
387(1)
7.1.2 From Passive Damping to Energy Harvesting
387(1)
7.1.3 Recent Research Trends
388(1)
7.1.3.1 Mechanical Engineers' Approach
389(2)
7.1.3.2 Electrical Engineers' Approach
391(1)
7.1.3.3 Micro-Electro-Mechanical Systems Engineers' Approach
391(1)
7.1.3.4 Military Application: Programmable Air-Burst Munition
392(1)
7.1.4 Piezoelectric Energy-Harvesting Principles
392(1)
7.1.4.1 Piezoelectric Constitutive Equations
392(1)
7.1.4.2 Piezoelectric Figures of Merit: Review
392(6)
7.1.4.3 Piezoelectric Passive Damper
398(2)
7.1.5 Three Phases in the Energy-Harvesting Process
400(1)
7.2 Mechanical-to-Mechanical Energy Transfer
401(2)
7.3 Mechanical-Electrical Energy Transduction
403(6)
7.3.1 Figure of Merit
403(1)
7.3.2 Piezoelectric Material Selection
404(1)
7.3.3 Design Optimization
404(1)
7.3.3.1 Cymbal
404(1)
7.3.3.2 Flexible Transducer
405(2)
7.3.4 Energy Flow Analysis
407(2)
7.4 Electrical-to-Electrical Energy Transfer
409(2)
7.4.1 DC-DC Converter
409(1)
7.4.2 Multilayered Cymbal
410(1)
7.4.3 Usage of a Piezoelectric Transformer: Further Impedance Matching
410(1)
7.5 Total Energy Flow Consideration
411(2)
7.6 Hybrid Energy Harvesting: Magnetoelectric DEVICES and the Future
413(6)
Chapter Essentials
415(1)
Check Point
416(1)
Chapter Problems
416(1)
References
417(2)
Chapter 8 Servo Displacement Transducer Applications
419(26)
8.1 Deformable Mirrors
419(5)
8.1.1 Monolithic Piezoelectric Deformable Mirror
419(1)
8.1.2 Multimorph Deformable Mirror
419(3)
8.1.3 Articulating Fold Mirror
422(2)
8.2 Camera Lens Control
424(3)
8.2.1 Helimorph
425(1)
8.2.2 Deformable Lens
425(2)
8.3 Microscope Stages
427(1)
8.4 High-Precision Linear Motion Devices
428(4)
8.4.1 Ultrahigh-Precision Linear Motion Guide Mechanism
429(3)
8.4.2 Ultraprecise x-y Stage
432(1)
8.5 Hydraulic Servo Valves
432(6)
8.5.1 Oil Pressure Servo Valves with Ceramic Actuators
433(5)
8.5.2 Air Pressure Servo Valves
438(1)
8.5.3 Direct Drive Spool Servo Valve
438(1)
8.6 Vibration and Noise Suppression Systems
438(7)
8.6.1 Vibration Damping
438(1)
8.6.2 Noise Elimination
439(1)
8.6.2.1 Acoustic Stealth and Sound Elimination
439(2)
8.6.2.2 Noise Barrier
441(1)
Chapter Essentials
441(1)
Check Point
442(1)
Chapter Problems
442(1)
References
442(3)
Chapter 9 Pulse Drive Motor Applications
445(20)
9.1 Imaging System Applications
445(1)
9.1.1 Swing Charge-Coupled Device Image Sensors
445(1)
9.1.2 Swing Pyroelectric Sensor
446(1)
9.2 Inchworm Devices
446(3)
9.2.1 Microangle Goniometer
447(1)
9.2.2 Linear Walking Machines
448(1)
9.3 Impulse Drive Motors
449(2)
9.3.1 Stator Impulse Drive
449(1)
9.3.2 Slider Impulse Drive
450(1)
9.4 Piezoelectric Relays
451(2)
9.4.1 Piezoelectric Relays
451(1)
9.4.2 Shape-Memory Ceramic Relays
452(1)
9.4.3 Piezoelectric Micro-Electro-Mechanical System Relay
452(1)
9.5 Automobile Adaptive Suspension System
453(1)
9.6 Inkjet Printers
454(4)
9.6.1 Basic Design of the Piezoelectric Inkjet Printer Head
455(1)
9.6.2 Integrated Piezo-Segment Printer Head (Piezo Bimorph)
455(3)
9.6.3 Piezo Multilayer Inkjet
458(1)
9.7 Diesel Piezo-Injection Valve
458(7)
9.7.1 Piezo-Actuator Material Development
459(1)
9.7.2 Multilayer Design
460(1)
9.7.3 Diesel Injection Valve Assembly
461(1)
Chapter Essentials
461(1)
Checkpoint
462(1)
Chapter Problems
462(1)
References
463(2)
Chapter 10 Ultrasonic Motor Applications
465(58)
10.1 Background of Ultrasonic Motors
465(2)
10.2 Classification of Ultrasonic Motors
467(3)
10.2.1 Standing-Wave Motor Principles
468(1)
10.2.2 Traveling-Wave Motor Principle
469(1)
10.2.3 Ultrasonic Motor Classification
470(1)
10.3 Standing-Wave Motors
470(6)
10.3.1 Standing-Wave Rotary Motors
470(1)
10.3.1.1 Vibratory Piece Motor (Shinsei)
470(1)
10.3.1.2 Hollow Piezoceramic Cylinder Motor (Tokin)
471(1)
10.3.1.3 Metal Tube Motor
471(2)
10.3.2 Standing-Wave Linear Motors
473(1)
10.3.2.1 π-Shaped Linear Motor
473(2)
10.3.2.2 Poly-Vinylidene-Difluoride Walker
475(1)
10.4 Mixed-Mode Motors
476(3)
10.4.1 "Kumada" Motor
476(1)
10.4.2 "Windmill" Motors
476(1)
10.4.3 Dual-Vibration Coupler Motors
477(1)
10.4.4 Piezoceramic Multilayer Ultrasonic Motor
478(1)
10.5 Traveling-Wave Motors
479(12)
10.5.1 Traveling-Wave Linear Motors
479(4)
10.5.2 Traveling-Wave Rotary Motors
483(1)
10.5.2.1 Basics of Traveling-Wave Rotary Motors
483(1)
10.5.2.2 Sashida's "Surfing" Rotary Motors
484(3)
10.5.2.3 Other "Surfing" Traveling-Wave Motors
487(1)
10.5.2.4 Disk and Rod Traveling-Wave Motors
488(1)
10.5.2.5 A-Shaped Motors
489(2)
10.6 Mode Rotation Motors
491(1)
10.7 Comparison among Various Ultrasonic Motors and Their System Integration
492(3)
10.7.1 Comparison among Various Ultrasonic Motors
492(1)
10.7.2 System Integration of the Ultrasonic Motor
493(2)
10.8 Calculations for the Speed and Thrust of Ultrasonic Motors
495(4)
10.8.1 Surface Wave Motor Calculations
495(1)
10.8.2 Vibration Coupler Motor Calculations
496(1)
10.8.2.1 Normal Force Assumption
497(1)
10.8.2.2 Slider Speed Assumption
497(1)
10.8.2.3 Thrust Calculation Assumption
498(1)
10.9 Designing Flow of the Ultrasonic Motor
499(6)
10.9.1 Defining the Specifications of the Motor
500(1)
10.9.2 Determining the Size of the Piezoelectric Actuator
500(1)
10.9.3 Determining the Size of the Vibratory Piece
500(1)
10.9.3.1 Analytical Approach
500(2)
10.9.3.2 Finite-Element Method Simulation
502(1)
10.9.4 Determining the Rail Size
502(1)
10.9.5 Selecting the Proper Drive Conditions
502(1)
10.9.5.1 Impedance Spectrum Measurement
502(1)
10.9.5.2 Stator Operation Test
503(1)
10.9.6 Checking the Motor Specifications
504(1)
10.10 Reliability of Ultrasonic Motors
505(3)
10.10.1 Heat Generation
505(1)
10.10.2 Frictional Coating and Motor Lifetime
506(1)
10.10.3 Drive and Control of the Ultrasonic Motor
507(1)
10.11 Resonance Impulse Motors
508(7)
10.11.1 Problems in Smooth Impact Drive Mechanisms
509(1)
10.11.2 Higher-Order Harmonics Combination
509(1)
10.11.3 Variable Duty-Ratio Rectangular Pulse Drive
509(4)
10.11.4 "Stick & Slip" Motion Model
513(1)
10.11.5 Drive Technique Summary
513(2)
10.12 Other Ultrasonic Devices
515(8)
10.12.1 Ultrasonic Surgical Knife
515(1)
10.12.2 Piezoelectric Pump/Fan
516(1)
10.12.2.1 Piezoelectric Pumps
516(1)
10.12.2.2 Piezoelectric Fans
517(2)
10.12.2.3 Evaporators
519(1)
10.12.3 Magnetic Actuators
519(1)
Chapter Essentials
519(1)
Check Point
520(1)
Chapter Problems
520(1)
References
521(2)
Chapter 11 The Future of Solid State Actuators in Micromechatronic Systems
523(18)
11.1 Piezoelectric Device Market Trends
523(1)
11.2 Engineering History
523(3)
11.2.1 History of Solid-State Actuators
523(2)
11.2.2 History of Piezoelectricity
525(1)
11.2.3 Engineering Trends after World War II
525(1)
11.3 Recent Research Trends and the Future Perspectives
526(7)
11.3.1 Performance to Reliability
526(1)
11.3.1.1 Pb-Free Piezoelectric Ceramics
526(1)
11.3.1.2 Biodegradable Polymers
527(1)
11.3.1.3 Low-Loss Piezoelectrics
527(1)
11.3.2 Hard to Soft
528(1)
11.3.2.1 Elastomer Actuators
528(1)
11.3.2.2 Electrostrictive Polymers
528(1)
11.3.2.3 Lead Zirconate Titanate Composites
529(1)
11.3.2.4 Large Strain Ceramics
529(1)
11.3.3 Macro to Nano
529(1)
11.3.4 Homo to Hetero
530(1)
11.3.5 Single to Multifunctional
531(1)
11.3.5.1 Magnetoelectric Effect
532(1)
11.3.5.2 Photostriction
532(1)
11.4 New Application Development
533(8)
11.4.1 Normal Technologies
533(1)
11.4.1.1 Ultrasonic Disposal Technology
534(1)
11.4.1.2 Reduction of Contamination Gas
534(1)
11.4.1.3 New Energy Harvesting Systems
534(2)
11.4.2 Crisis Technology
536(1)
Chapter Essentials
536(1)
Check Point
537(1)
Chapter Problems
537(1)
References
538(3)
Index 541
Kenji Uchino, a pioneer in piezoelectric actuators, is the Founding Director of the International Center for Actuators and Transducers (ICAT) and Professor of Electrical Engineering and Materials Science & Engineering at the Pennsylvania State University. He was Associate Director (Navy Ambassador to Japan) at The US Office of Naval Research Global Tokyo Office as IPA from 2010 till 2014. He was also the Founder and Senior Vice President & CTO of Micromechatronics Inc., State College, PA.