Second Edition Preface |
|
xv | |
First Edition Preface |
|
xvii | |
Author |
|
xix | |
|
|
xxi | |
Suggested Teaching Schedule |
|
xxiii | |
Prerequisite Knowledge Check |
|
xxv | |
Answers |
|
xxvii | |
|
Chapter 1 Current Trends for Actuators and Micromechatronics |
|
|
1 | (36) |
|
1.1 The Need for New Actuators |
|
|
1 | (3) |
|
1.2 Conventional Methods for Positioning |
|
|
4 | (2) |
|
1.2.1 Oil Pressure Type Displacement Reduction Mechanism |
|
|
5 | (1) |
|
1.2.2 Pure Mechanical Displacement Reduction Mechanism |
|
|
6 | (1) |
|
1.3 An Overview of Solid-State Actuators |
|
|
6 | (25) |
|
1.3.1 Microelectromagnetic Motors |
|
|
7 | (1) |
|
1.3.2 Micro-Electro-Mechanical-Systems |
|
|
8 | (2) |
|
|
10 | (3) |
|
|
13 | (4) |
|
1.3.5 Shape Memory Alloys |
|
|
17 | (3) |
|
1.3.6 Magnetostrictive Actuators |
|
|
20 | (2) |
|
1.3.7 Piezoelectric/Electrostrictive Actuators |
|
|
22 | (3) |
|
1.3.8 Photo-Driven Actuators |
|
|
25 | (2) |
|
1.3.9 Electro/Magnetorheological Fluids |
|
|
27 | (2) |
|
|
29 | (1) |
|
1.3.11 Comparison among Solid-State Actuators |
|
|
30 | (1) |
|
1.4 Structure of the Text |
|
|
31 | (6) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (2) |
|
Chapter 2 A Theoretical Description of Piezoelectricity |
|
|
37 | (88) |
|
|
37 | (7) |
|
2.1.1 Crystal Structure and Ferroelectricity |
|
|
37 | (1) |
|
2.1.2 Origin of Spontaneous Polarization |
|
|
38 | (3) |
|
2.1.3 Physical Properties of Ferroelectrics |
|
|
41 | (3) |
|
2.2 Microscopic Origins of Electric Field---Induced Strains |
|
|
44 | (1) |
|
2.3 Tensor/Matrix Description of Piezoelectricity |
|
|
45 | (13) |
|
2.3.1 Tensor Representation |
|
|
45 | (1) |
|
2.3.2 Crystal Symmetry and Tensor Form |
|
|
46 | (1) |
|
|
47 | (11) |
|
2.4 Theory of Ferroelectric Phenomenology |
|
|
58 | (27) |
|
2.4.1 Background of Phenomenology |
|
|
58 | (1) |
|
2.4.1.1 Polarization Expansion |
|
|
58 | (1) |
|
2.4.1.2 Temperature Expansion |
|
|
58 | (1) |
|
|
59 | (1) |
|
2.4.2 Landau Theory of the Ferroelectric Phase Transition |
|
|
59 | (1) |
|
2.4.2.1 The Second-Order Transition |
|
|
60 | (1) |
|
2.4.2.2 The First-Order Transition |
|
|
61 | (3) |
|
2.4.3 Phenomenological Description of Electrostriction |
|
|
64 | (3) |
|
2.4.4 Converse Effects of Electrostriction |
|
|
67 | (1) |
|
2.4.5 Temperature Dependence of Electrostriction |
|
|
68 | (1) |
|
2.4.6 Electromechanical Coupling Factor |
|
|
68 | (1) |
|
2.4.6.1 Piezoelectric Constitutive Equations |
|
|
68 | (1) |
|
2.4.6.2 Electromechanical Coupling Factor |
|
|
69 | (5) |
|
2.4.6.3 Intensive and Extensive Parameters |
|
|
74 | (4) |
|
2.4.7 Crystal Orientation Dependence of Piezoelectricity |
|
|
78 | (4) |
|
2.4.8 Phenomenology of Antiferroelectrics |
|
|
82 | (3) |
|
2.5 Phenomenology of Magnetostriction |
|
|
85 | (2) |
|
2.6 Ferroelectric Domain Reorientation |
|
|
87 | (11) |
|
|
87 | (4) |
|
2.6.2 Strains Accompanied by Ferroelectric Domain Reorientation |
|
|
91 | (2) |
|
2.6.3 The Uchida-Ikeda Model |
|
|
93 | (4) |
|
2.6.4 Crystal Structures and Coercive Fields |
|
|
97 | (1) |
|
2.7 Loss Mechanisms in Piezoelectrics |
|
|
98 | (12) |
|
2.7.1 Loss Phenomenology in Piezoelectrics |
|
|
98 | (7) |
|
2.7.2 Loss Measurement Technique---Pseudostatic Method |
|
|
105 | (1) |
|
2.7.3 Heat Generation at Off-Resonance |
|
|
105 | (3) |
|
2.7.4 Microscopic Origins of Extensive Losses |
|
|
108 | (2) |
|
2.8 Piezoelectric Resonance |
|
|
110 | (15) |
|
2.8.1 k31 Longitudinal Vibration Mode |
|
|
110 | (1) |
|
2.8.1.1 Piezoelectric Dynamic Equation |
|
|
110 | (4) |
|
2.8.1.2 Admittance around Resonance and Antiresonance |
|
|
114 | (1) |
|
2.8.1.3 Resonance and Antiresonance Vibration Modes |
|
|
115 | (1) |
|
2.8.2 k33 Longitudinal Vibration Mode |
|
|
115 | (1) |
|
2.8.2.1 Piezoelectric Dynamic Equation |
|
|
115 | (2) |
|
2.8.2.2 Boundary Condition: E-Constant vs. D-Constant |
|
|
117 | (1) |
|
2.8.3 Admittance/Impedance Spectrum Characterization Method |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
122 | (2) |
|
|
124 | (1) |
|
Chapter 3 Actuator Materials |
|
|
125 | (86) |
|
3.1 History of Actuator Materials |
|
|
125 | (3) |
|
3.1.1 Piezoelectric Materials |
|
|
125 | (1) |
|
3.1.2 Shape Memory Alloys |
|
|
126 | (1) |
|
3.1.3 Magnetostrictive Alloys |
|
|
126 | (2) |
|
3.2 Figures of Merit for Transducers |
|
|
128 | (9) |
|
3.2.1 The Piezoelectric/Piezomagnetic Coefficients |
|
|
129 | (1) |
|
3.2.2 The Electromechanical Coupling Factor, k, and Related Quantities |
|
|
130 | (1) |
|
3.2.2.1 The Electromechanical Coupling Factor (k) |
|
|
130 | (1) |
|
3.2.2.2 The Energy Transmission Coefficient (λmax) |
|
|
130 | (4) |
|
|
134 | (1) |
|
3.2.3 Mechanical Quality Factor, QM |
|
|
134 | (1) |
|
3.2.4 Acoustic Impedance, Z |
|
|
135 | (1) |
|
3.2.5 Maximum Vibration Velocity, νmax |
|
|
136 | (1) |
|
3.3 Piezoelectric Transducer Materials |
|
|
137 | (16) |
|
3.3.1 Practical Piezoelectric/Electrostrictive Materials |
|
|
138 | (1) |
|
3.3.1.1 Quartz, Lithium Niobate/Tantalate Single Crystals |
|
|
138 | (1) |
|
3.3.1.2 Perovskite BaTiO3, Lead Zirconate Titanate Piezoelectrics |
|
|
139 | (4) |
|
3.3.1.3 Complex Perovskite Relaxor Ferroelectrics |
|
|
143 | (6) |
|
3.3.1.4 Pb-Free Piezoelectrics |
|
|
149 | (3) |
|
3.3.2 Antiferro- to Ferroelectric Phase-Change Ceramics |
|
|
152 | (1) |
|
3.3.3 Piezoelectric Polymers |
|
|
152 | (1) |
|
3.4 Reliability Issues of Actuator Materials |
|
|
153 | (20) |
|
3.4.1 Temperature Stability in Field-Induced Strain |
|
|
153 | (1) |
|
3.4.1.1 Macroscopic Composite Method |
|
|
154 | (1) |
|
3.4.1.2 Microscopic Approach |
|
|
154 | (2) |
|
3.4.2 Response Speed of Actuators |
|
|
156 | (1) |
|
3.4.2.1 Material Restrictions |
|
|
156 | (1) |
|
3.4.2.2 Device Restriction |
|
|
157 | (2) |
|
3.4.2.3 Drive Circuit Limitation |
|
|
159 | (1) |
|
3.4.3 Mechanical Properties of Actuators |
|
|
159 | (1) |
|
3.4.3.1 Uniaxial Stress Dependence of Piezoelectric/Electrostrictive Strains |
|
|
159 | (2) |
|
3.4.3.2 Mechanical Strength |
|
|
161 | (8) |
|
3.4.3.3 Acoustic Emission in Piezoelectrics |
|
|
169 | (4) |
|
3.5 High-Power Piezoelectrics |
|
|
173 | (27) |
|
3.5.1 Loss and Mechanical Quality Factor Relations |
|
|
175 | (1) |
|
3.5.1.1 Loss and Mechanical Quality Factor in k31 Mode |
|
|
175 | (3) |
|
3.5.1.2 Loss and Mechanical Quality Factor in Other Modes |
|
|
178 | (4) |
|
3.5.2 Heat Generation under Resonance Conditions |
|
|
182 | (1) |
|
3.5.2.1 Vibration Velocity versus Mechanical Quality Factor, Qm |
|
|
182 | (1) |
|
3.5.2.2 Heat Generation under Resonance Conditions |
|
|
183 | (3) |
|
3.5.3 Composition Dependence of High-Power Performances |
|
|
186 | (1) |
|
3.5.3.1 Lead Zirconate Titanate---Based Ceramics |
|
|
186 | (2) |
|
3.5.3.2 Pb-Free Piezoelectrics |
|
|
188 | (2) |
|
3.5.4 Doping Effect on Piezoelectric Losses |
|
|
190 | (1) |
|
3.5.4.1 Hard and Soft Lead Zirconate Titanates |
|
|
190 | (2) |
|
3.5.4.2 Dipole Alignment Models |
|
|
192 | (5) |
|
3.5.5 Grain Size Effect on Hysteresis and Losses |
|
|
197 | (1) |
|
3.5.6 Loss Anisotropy: Crystal Orientation Dependence of Losses |
|
|
198 | (1) |
|
3.5.6.1 Loss Anisotropy in Lead Zirconate Titanate |
|
|
198 | (2) |
|
3.5.6.2 Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystal |
|
|
200 | (1) |
|
3.6 High Power Magnetostrictors |
|
|
200 | (11) |
|
3.6.1 Piezomagnetic Loss Equations |
|
|
200 | (2) |
|
3.6.2 Impedance Spectrum Measurement |
|
|
202 | (1) |
|
|
203 | (2) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (5) |
|
Chapter 4 Ceramic Fabrication Methods and Actuator Designs |
|
|
211 | (56) |
|
4.1 Fabrication Processes of Ceramics and Single Crystals |
|
|
211 | (7) |
|
4.1.1 Preparation of the Ceramic Powders |
|
|
211 | (1) |
|
4.1.1.1 Solid-State Reaction (Mixed-Oxide Method) |
|
|
211 | (1) |
|
4.1.1.2 The Co-Precipitation Method |
|
|
212 | (1) |
|
4.1.1.3 Alkoxide Hydrolysis |
|
|
213 | (1) |
|
4.1.2 The Sintering Process |
|
|
214 | (2) |
|
4.1.3 Single Crystal Growth |
|
|
216 | (1) |
|
|
216 | (1) |
|
4.1.3.2 Pb(Zn1/3Nb2/3)O3-PbTiO3, Pb(Mg1/3Nb2/3)O3-PbTiO3 |
|
|
216 | (1) |
|
|
216 | (1) |
|
4.1.4 Templated Grain Growth |
|
|
217 | (1) |
|
4.2 Size Effect of Ferroelectricity |
|
|
218 | (5) |
|
4.2.1 Grain Size Effect on Ferroelectricity |
|
|
218 | (1) |
|
4.2.2 3D Particle Size Effect on Ferroelectricity |
|
|
219 | (4) |
|
4.3 Actuator/Device Design |
|
|
223 | (21) |
|
|
224 | (1) |
|
4.3.2 Multilayer Actuators |
|
|
225 | (7) |
|
4.3.3 Cylindrical Devices |
|
|
232 | (1) |
|
4.3.4 Unimorph/Bimorph/Monomorph |
|
|
233 | (1) |
|
|
233 | (5) |
|
4.3.4.2 Monomorph/Rainbow |
|
|
238 | (2) |
|
4.3.5 Flextension/Hinge Lever Amplification Mechanisms |
|
|
240 | (1) |
|
4.3.5.1 Displacement Amplification Mechanism |
|
|
240 | (2) |
|
|
242 | (1) |
|
4.3.6 Flexible Composites |
|
|
242 | (2) |
|
|
244 | (8) |
|
4.4.1 Actuator Electrodes: An Overview |
|
|
244 | (1) |
|
4.4.2 Ag-Based Electrodes |
|
|
245 | (2) |
|
4.4.3 Base Metal Electrodes |
|
|
247 | (2) |
|
|
249 | (1) |
|
4.4.4.1 Ceramic Electrode |
|
|
249 | (1) |
|
4.4.4.2 BaTiO3-Based Multilayer Actuator |
|
|
249 | (1) |
|
4.4.4.3 Mechanical Strength of Ceramic Electrode Devices |
|
|
250 | (2) |
|
4.5 Piezoelectric Thin/Thick Films and Micro-Electro-Mechanical-Systems |
|
|
252 | (15) |
|
4.5.1 Piezoelectric Thin Films |
|
|
252 | (1) |
|
4.5.1.1 Thin Film Fabrication Techniques |
|
|
252 | (1) |
|
4.5.1.2 Orientation Dependence of Piezoelectric Performances |
|
|
253 | (1) |
|
4.5.1.3 Thickness Dependence of Physical Performance |
|
|
254 | (2) |
|
4.5.1.4 Constraints in Thin Films |
|
|
256 | (1) |
|
4.5.2 Piezoelectric Thick Films |
|
|
257 | (1) |
|
4.5.3 Piezoelectric Micro-Electro-Mechanical-Systems |
|
|
257 | (3) |
|
|
260 | (2) |
|
|
262 | (1) |
|
|
262 | (2) |
|
|
264 | (3) |
|
Chapter 5 Drive/Control Techniques for Piezoelectric Actuators |
|
|
267 | (92) |
|
5.1 Classification of Piezoelectric Actuators |
|
|
267 | (2) |
|
5.2 High Power Characterization System |
|
|
269 | (17) |
|
5.2.1 Loss Measuring Technique I: Pseudostatic Method |
|
|
270 | (1) |
|
5.2.2 Loss Measuring Technique II: Admittance Spectrum Method |
|
|
270 | (1) |
|
5.2.2.1 Constant Voltage Drive: Gen I (1980s) |
|
|
270 | (1) |
|
5.2.2.2 Constant Current Drive: Gen II (1990s) |
|
|
271 | (1) |
|
5.2.2.3 Constant Vibration Velocity Method: Gen III (2000s) |
|
|
272 | (4) |
|
5.2.2.4 Real Electric Power Method: Gen V (2010s) |
|
|
276 | (1) |
|
5.2.2.5 Determination Methods of the Mechanical Quality Factor |
|
|
276 | (2) |
|
5.2.3 Loss Measuring Technique III: Transient/Burst Drive Method |
|
|
278 | (1) |
|
5.2.3.1 Pulse Drive Method |
|
|
278 | (1) |
|
5.2.3.2 Burst Mode Method: Gen IV (2010s) |
|
|
279 | (7) |
|
|
286 | (18) |
|
5.3.1 The Laplace Transform |
|
|
286 | (3) |
|
5.3.2 The Transfer Function |
|
|
289 | (1) |
|
5.3.2.1 Transfer Function of a Piezoelectric Actuator |
|
|
289 | (2) |
|
5.3.2.2 Transfer Functions of a Position Sensor/Differential Amplifier |
|
|
291 | (1) |
|
|
292 | (1) |
|
5.3.3 Criterion for System Stability |
|
|
293 | (1) |
|
5.3.3.1 Characteristic Equation |
|
|
293 | (1) |
|
5.3.3.2 The Nyquist Criterion for Stability |
|
|
294 | (1) |
|
|
295 | (2) |
|
5.3.5 Advantages of Feedback Control |
|
|
297 | (1) |
|
5.3.5.1 Linear Relation between Input and Output |
|
|
297 | (2) |
|
5.3.5.2 Output Response with a Flat Frequency Dependence |
|
|
299 | (1) |
|
5.3.5.3 Minimization of External Disturbance Effects |
|
|
299 | (5) |
|
5.3.6 Polarization Control Method |
|
|
304 | (1) |
|
|
304 | (18) |
|
5.4.1 The Piezoelectric Equations and Vibration Modes |
|
|
305 | (1) |
|
5.4.1.1 Piezoelectric Constitutive Equations |
|
|
305 | (1) |
|
5.4.1.2 Longitudinal Vibration Mode via Transverse Piezoelectric Effect (k31 Mode) |
|
|
306 | (2) |
|
5.4.1.3 Longitudinal Vibration Mode via Longitudinal Piezoelectric Effect (k33 Mode) |
|
|
308 | (1) |
|
5.4.1.4 Other Vibration Modes |
|
|
309 | (1) |
|
5.4.2 Consideration of the Loss |
|
|
310 | (1) |
|
5.4.3 Pulse Drive on the k31 Mode Specimen |
|
|
310 | (1) |
|
5.4.3.1 General Solution for Longitudinal Vibration k31 Mode |
|
|
310 | (2) |
|
5.4.3.2 Displacement Response to a Step Voltage |
|
|
312 | (3) |
|
5.4.3.3 Displacement Response to Pulse Drive |
|
|
315 | (2) |
|
5.4.3.4 Displacement Response to Pseudo-Step Drive |
|
|
317 | (2) |
|
5.4.3.5 Consideration of the Loss in Transient Response |
|
|
319 | (1) |
|
5.4.4 Pulse Width Modulation Method |
|
|
320 | (2) |
|
|
322 | (11) |
|
5.5.1 Piezoelectric Resonance: Reconsideration |
|
|
322 | (2) |
|
5.5.2 Equivalent Circuits for Piezoelectric Vibrators |
|
|
324 | (1) |
|
5.5.2.1 Equivalency between Mechanical and Electrical Systems |
|
|
324 | (1) |
|
5.5.2.2 Equivalent Circuit (Loss-Free) of the k31 Mode |
|
|
325 | (2) |
|
5.5.2.3 Equivalent Circuit (with Losses) of k31 Mode |
|
|
327 | (6) |
|
5.5.2.4 Equivalent Circuit of k33 Mode |
|
|
333 | (1) |
|
5.6 Position/Force Sensors |
|
|
333 | (5) |
|
|
334 | (1) |
|
5.6.1.1 Resistance Methods |
|
|
334 | (1) |
|
5.6.1.2 Electromagnetic Induction Methods |
|
|
335 | (1) |
|
5.6.1.3 Capacitance Methods |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
336 | (2) |
|
5.7 Power Supply/Drive Scheme |
|
|
338 | (21) |
|
5.7.1 Power Supply Specifications |
|
|
338 | (1) |
|
5.7.2 Drive/Control Schemes of Piezoelectric Actuators |
|
|
339 | (1) |
|
5.7.2.1 Off-Resonance (Capacitive) Drive |
|
|
340 | (1) |
|
5.7.2.2 Resonance/Antiresonance (Resistive) Drive |
|
|
341 | (1) |
|
5.7.2.3 Power Minimization (Reactive) Drive |
|
|
342 | (1) |
|
5.7.3 Fundamental Circuit Components |
|
|
343 | (1) |
|
5.7.3.1 Switching Regulator |
|
|
343 | (3) |
|
5.7.3.2 On-Off Signal Generator |
|
|
346 | (1) |
|
5.7.3.3 Piezoelectric Transformer |
|
|
346 | (5) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
353 | (3) |
|
|
356 | (3) |
|
Chapter 6 Computer Simulation of Piezoelectric Devices |
|
|
359 | (28) |
|
6.1 ATILA Finite-Element Method Software Code |
|
|
359 | (19) |
|
6.1.1 Finite-Element Method Fundamentals |
|
|
359 | (1) |
|
6.1.1.1 Domain and Finite Elements |
|
|
359 | (1) |
|
6.1.1.2 Defining the Equations for the Problem |
|
|
360 | (2) |
|
6.1.1.3 The Variational Principle |
|
|
362 | (1) |
|
6.1.2 Application of Finite-Element Method |
|
|
362 | (1) |
|
6.1.2.1 Discretization of the Domain |
|
|
362 | (1) |
|
|
363 | (3) |
|
|
366 | (3) |
|
6.1.2.4 Discretization of the Variational Form |
|
|
369 | (2) |
|
|
371 | (1) |
|
|
372 | (1) |
|
6.1.3 ATILA Simulation Examples |
|
|
373 | (1) |
|
6.1.3.1 k31 Resonance/Antiresonance Modes |
|
|
373 | (1) |
|
6.1.3.2 Stress Concentration in a Multilayer Actuator |
|
|
374 | (1) |
|
|
375 | (1) |
|
6.1.3.4 Piezoelectric Transformer |
|
|
376 | (2) |
|
6.2 PSpice Circuit Analysis Software |
|
|
378 | (4) |
|
6.2.1 k31-Type Piezoplate Simulation with Institute of Electrical and Electronics Engineers Equivalent Circuit |
|
|
378 | (2) |
|
6.2.2 k31 Piezoplate Equivalent Circuit Simulation with Three Losses |
|
|
380 | (2) |
|
|
382 | (5) |
|
|
382 | (1) |
|
|
383 | (1) |
|
|
384 | (1) |
|
|
384 | (3) |
|
Chapter 7 Piezoelectric Energy-Harvesting Systems |
|
|
387 | (32) |
|
|
387 | (14) |
|
7.1.1 Necessity of Piezoelectric Energy Harvesting |
|
|
387 | (1) |
|
7.1.2 From Passive Damping to Energy Harvesting |
|
|
387 | (1) |
|
7.1.3 Recent Research Trends |
|
|
388 | (1) |
|
7.1.3.1 Mechanical Engineers' Approach |
|
|
389 | (2) |
|
7.1.3.2 Electrical Engineers' Approach |
|
|
391 | (1) |
|
7.1.3.3 Micro-Electro-Mechanical Systems Engineers' Approach |
|
|
391 | (1) |
|
7.1.3.4 Military Application: Programmable Air-Burst Munition |
|
|
392 | (1) |
|
7.1.4 Piezoelectric Energy-Harvesting Principles |
|
|
392 | (1) |
|
7.1.4.1 Piezoelectric Constitutive Equations |
|
|
392 | (1) |
|
7.1.4.2 Piezoelectric Figures of Merit: Review |
|
|
392 | (6) |
|
7.1.4.3 Piezoelectric Passive Damper |
|
|
398 | (2) |
|
7.1.5 Three Phases in the Energy-Harvesting Process |
|
|
400 | (1) |
|
7.2 Mechanical-to-Mechanical Energy Transfer |
|
|
401 | (2) |
|
7.3 Mechanical-Electrical Energy Transduction |
|
|
403 | (6) |
|
|
403 | (1) |
|
7.3.2 Piezoelectric Material Selection |
|
|
404 | (1) |
|
7.3.3 Design Optimization |
|
|
404 | (1) |
|
|
404 | (1) |
|
7.3.3.2 Flexible Transducer |
|
|
405 | (2) |
|
7.3.4 Energy Flow Analysis |
|
|
407 | (2) |
|
7.4 Electrical-to-Electrical Energy Transfer |
|
|
409 | (2) |
|
|
409 | (1) |
|
7.4.2 Multilayered Cymbal |
|
|
410 | (1) |
|
7.4.3 Usage of a Piezoelectric Transformer: Further Impedance Matching |
|
|
410 | (1) |
|
7.5 Total Energy Flow Consideration |
|
|
411 | (2) |
|
7.6 Hybrid Energy Harvesting: Magnetoelectric DEVICES and the Future |
|
|
413 | (6) |
|
|
415 | (1) |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
417 | (2) |
|
Chapter 8 Servo Displacement Transducer Applications |
|
|
419 | (26) |
|
|
419 | (5) |
|
8.1.1 Monolithic Piezoelectric Deformable Mirror |
|
|
419 | (1) |
|
8.1.2 Multimorph Deformable Mirror |
|
|
419 | (3) |
|
8.1.3 Articulating Fold Mirror |
|
|
422 | (2) |
|
|
424 | (3) |
|
|
425 | (1) |
|
|
425 | (2) |
|
|
427 | (1) |
|
8.4 High-Precision Linear Motion Devices |
|
|
428 | (4) |
|
8.4.1 Ultrahigh-Precision Linear Motion Guide Mechanism |
|
|
429 | (3) |
|
8.4.2 Ultraprecise x-y Stage |
|
|
432 | (1) |
|
8.5 Hydraulic Servo Valves |
|
|
432 | (6) |
|
8.5.1 Oil Pressure Servo Valves with Ceramic Actuators |
|
|
433 | (5) |
|
8.5.2 Air Pressure Servo Valves |
|
|
438 | (1) |
|
8.5.3 Direct Drive Spool Servo Valve |
|
|
438 | (1) |
|
8.6 Vibration and Noise Suppression Systems |
|
|
438 | (7) |
|
|
438 | (1) |
|
|
439 | (1) |
|
8.6.2.1 Acoustic Stealth and Sound Elimination |
|
|
439 | (2) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
442 | (1) |
|
|
442 | (1) |
|
|
442 | (3) |
|
Chapter 9 Pulse Drive Motor Applications |
|
|
445 | (20) |
|
9.1 Imaging System Applications |
|
|
445 | (1) |
|
9.1.1 Swing Charge-Coupled Device Image Sensors |
|
|
445 | (1) |
|
9.1.2 Swing Pyroelectric Sensor |
|
|
446 | (1) |
|
|
446 | (3) |
|
9.2.1 Microangle Goniometer |
|
|
447 | (1) |
|
9.2.2 Linear Walking Machines |
|
|
448 | (1) |
|
|
449 | (2) |
|
9.3.1 Stator Impulse Drive |
|
|
449 | (1) |
|
9.3.2 Slider Impulse Drive |
|
|
450 | (1) |
|
|
451 | (2) |
|
9.4.1 Piezoelectric Relays |
|
|
451 | (1) |
|
9.4.2 Shape-Memory Ceramic Relays |
|
|
452 | (1) |
|
9.4.3 Piezoelectric Micro-Electro-Mechanical System Relay |
|
|
452 | (1) |
|
9.5 Automobile Adaptive Suspension System |
|
|
453 | (1) |
|
|
454 | (4) |
|
9.6.1 Basic Design of the Piezoelectric Inkjet Printer Head |
|
|
455 | (1) |
|
9.6.2 Integrated Piezo-Segment Printer Head (Piezo Bimorph) |
|
|
455 | (3) |
|
9.6.3 Piezo Multilayer Inkjet |
|
|
458 | (1) |
|
9.7 Diesel Piezo-Injection Valve |
|
|
458 | (7) |
|
9.7.1 Piezo-Actuator Material Development |
|
|
459 | (1) |
|
|
460 | (1) |
|
9.7.3 Diesel Injection Valve Assembly |
|
|
461 | (1) |
|
|
461 | (1) |
|
|
462 | (1) |
|
|
462 | (1) |
|
|
463 | (2) |
|
Chapter 10 Ultrasonic Motor Applications |
|
|
465 | (58) |
|
10.1 Background of Ultrasonic Motors |
|
|
465 | (2) |
|
10.2 Classification of Ultrasonic Motors |
|
|
467 | (3) |
|
10.2.1 Standing-Wave Motor Principles |
|
|
468 | (1) |
|
10.2.2 Traveling-Wave Motor Principle |
|
|
469 | (1) |
|
10.2.3 Ultrasonic Motor Classification |
|
|
470 | (1) |
|
10.3 Standing-Wave Motors |
|
|
470 | (6) |
|
10.3.1 Standing-Wave Rotary Motors |
|
|
470 | (1) |
|
10.3.1.1 Vibratory Piece Motor (Shinsei) |
|
|
470 | (1) |
|
10.3.1.2 Hollow Piezoceramic Cylinder Motor (Tokin) |
|
|
471 | (1) |
|
10.3.1.3 Metal Tube Motor |
|
|
471 | (2) |
|
10.3.2 Standing-Wave Linear Motors |
|
|
473 | (1) |
|
10.3.2.1 π-Shaped Linear Motor |
|
|
473 | (2) |
|
10.3.2.2 Poly-Vinylidene-Difluoride Walker |
|
|
475 | (1) |
|
|
476 | (3) |
|
|
476 | (1) |
|
|
476 | (1) |
|
10.4.3 Dual-Vibration Coupler Motors |
|
|
477 | (1) |
|
10.4.4 Piezoceramic Multilayer Ultrasonic Motor |
|
|
478 | (1) |
|
10.5 Traveling-Wave Motors |
|
|
479 | (12) |
|
10.5.1 Traveling-Wave Linear Motors |
|
|
479 | (4) |
|
10.5.2 Traveling-Wave Rotary Motors |
|
|
483 | (1) |
|
10.5.2.1 Basics of Traveling-Wave Rotary Motors |
|
|
483 | (1) |
|
10.5.2.2 Sashida's "Surfing" Rotary Motors |
|
|
484 | (3) |
|
10.5.2.3 Other "Surfing" Traveling-Wave Motors |
|
|
487 | (1) |
|
10.5.2.4 Disk and Rod Traveling-Wave Motors |
|
|
488 | (1) |
|
|
489 | (2) |
|
10.6 Mode Rotation Motors |
|
|
491 | (1) |
|
10.7 Comparison among Various Ultrasonic Motors and Their System Integration |
|
|
492 | (3) |
|
10.7.1 Comparison among Various Ultrasonic Motors |
|
|
492 | (1) |
|
10.7.2 System Integration of the Ultrasonic Motor |
|
|
493 | (2) |
|
10.8 Calculations for the Speed and Thrust of Ultrasonic Motors |
|
|
495 | (4) |
|
10.8.1 Surface Wave Motor Calculations |
|
|
495 | (1) |
|
10.8.2 Vibration Coupler Motor Calculations |
|
|
496 | (1) |
|
10.8.2.1 Normal Force Assumption |
|
|
497 | (1) |
|
10.8.2.2 Slider Speed Assumption |
|
|
497 | (1) |
|
10.8.2.3 Thrust Calculation Assumption |
|
|
498 | (1) |
|
10.9 Designing Flow of the Ultrasonic Motor |
|
|
499 | (6) |
|
10.9.1 Defining the Specifications of the Motor |
|
|
500 | (1) |
|
10.9.2 Determining the Size of the Piezoelectric Actuator |
|
|
500 | (1) |
|
10.9.3 Determining the Size of the Vibratory Piece |
|
|
500 | (1) |
|
10.9.3.1 Analytical Approach |
|
|
500 | (2) |
|
10.9.3.2 Finite-Element Method Simulation |
|
|
502 | (1) |
|
10.9.4 Determining the Rail Size |
|
|
502 | (1) |
|
10.9.5 Selecting the Proper Drive Conditions |
|
|
502 | (1) |
|
10.9.5.1 Impedance Spectrum Measurement |
|
|
502 | (1) |
|
10.9.5.2 Stator Operation Test |
|
|
503 | (1) |
|
10.9.6 Checking the Motor Specifications |
|
|
504 | (1) |
|
10.10 Reliability of Ultrasonic Motors |
|
|
505 | (3) |
|
|
505 | (1) |
|
10.10.2 Frictional Coating and Motor Lifetime |
|
|
506 | (1) |
|
10.10.3 Drive and Control of the Ultrasonic Motor |
|
|
507 | (1) |
|
10.11 Resonance Impulse Motors |
|
|
508 | (7) |
|
10.11.1 Problems in Smooth Impact Drive Mechanisms |
|
|
509 | (1) |
|
10.11.2 Higher-Order Harmonics Combination |
|
|
509 | (1) |
|
10.11.3 Variable Duty-Ratio Rectangular Pulse Drive |
|
|
509 | (4) |
|
10.11.4 "Stick & Slip" Motion Model |
|
|
513 | (1) |
|
10.11.5 Drive Technique Summary |
|
|
513 | (2) |
|
10.12 Other Ultrasonic Devices |
|
|
515 | (8) |
|
10.12.1 Ultrasonic Surgical Knife |
|
|
515 | (1) |
|
10.12.2 Piezoelectric Pump/Fan |
|
|
516 | (1) |
|
10.12.2.1 Piezoelectric Pumps |
|
|
516 | (1) |
|
10.12.2.2 Piezoelectric Fans |
|
|
517 | (2) |
|
|
519 | (1) |
|
10.12.3 Magnetic Actuators |
|
|
519 | (1) |
|
|
519 | (1) |
|
|
520 | (1) |
|
|
520 | (1) |
|
|
521 | (2) |
|
Chapter 11 The Future of Solid State Actuators in Micromechatronic Systems |
|
|
523 | (18) |
|
11.1 Piezoelectric Device Market Trends |
|
|
523 | (1) |
|
|
523 | (3) |
|
11.2.1 History of Solid-State Actuators |
|
|
523 | (2) |
|
11.2.2 History of Piezoelectricity |
|
|
525 | (1) |
|
11.2.3 Engineering Trends after World War II |
|
|
525 | (1) |
|
11.3 Recent Research Trends and the Future Perspectives |
|
|
526 | (7) |
|
11.3.1 Performance to Reliability |
|
|
526 | (1) |
|
11.3.1.1 Pb-Free Piezoelectric Ceramics |
|
|
526 | (1) |
|
11.3.1.2 Biodegradable Polymers |
|
|
527 | (1) |
|
11.3.1.3 Low-Loss Piezoelectrics |
|
|
527 | (1) |
|
|
528 | (1) |
|
11.3.2.1 Elastomer Actuators |
|
|
528 | (1) |
|
11.3.2.2 Electrostrictive Polymers |
|
|
528 | (1) |
|
11.3.2.3 Lead Zirconate Titanate Composites |
|
|
529 | (1) |
|
11.3.2.4 Large Strain Ceramics |
|
|
529 | (1) |
|
|
529 | (1) |
|
|
530 | (1) |
|
11.3.5 Single to Multifunctional |
|
|
531 | (1) |
|
11.3.5.1 Magnetoelectric Effect |
|
|
532 | (1) |
|
|
532 | (1) |
|
11.4 New Application Development |
|
|
533 | (8) |
|
11.4.1 Normal Technologies |
|
|
533 | (1) |
|
11.4.1.1 Ultrasonic Disposal Technology |
|
|
534 | (1) |
|
11.4.1.2 Reduction of Contamination Gas |
|
|
534 | (1) |
|
11.4.1.3 New Energy Harvesting Systems |
|
|
534 | (2) |
|
|
536 | (1) |
|
|
536 | (1) |
|
|
537 | (1) |
|
|
537 | (1) |
|
|
538 | (3) |
Index |
|
541 | |