Atjaunināt sīkdatņu piekrišanu

Microscopic Chaos, Fractals And Transport In Nonequilibrium Statistical Mechanics [Hardback]

(Univ Of London, Uk)
  • Formāts: Hardback, 460 pages
  • Sērija : Advanced Series in Nonlinear Dynamics 24
  • Izdošanas datums: 19-Jun-2007
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9812565078
  • ISBN-13: 9789812565075
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 191,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 460 pages
  • Sērija : Advanced Series in Nonlinear Dynamics 24
  • Izdošanas datums: 19-Jun-2007
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9812565078
  • ISBN-13: 9789812565075
Citas grāmatas par šo tēmu:
A valuable introduction for newcomers as well as an important reference and source of inspiration for established researchers, this book provides an up-to-date summary of central topics in the field of nonequilibrium statistical mechanics and dynamical systems theory.Understanding macroscopic properties of matter starting from microscopic chaos in the equations of motion of single atoms or molecules is a key problem in nonequilibrium statistical mechanics. Of particular interest both for theory and applications are transport processes such as diffusion, reaction, conduction and viscosity.Recent advances towards a deterministic theory of nonequilibrium statistical physics are summarized: Both Hamiltonian dynamical systems under nonequilibrium boundary conditions and non-Hamiltonian modelings of nonequilibrium steady states by using thermal reservoirs are considered. The surprising new results include transport coefficients that are fractal functions of control parameters, fundamental relations between transport coefficients and chaos quantities, and an understanding of nonequilibrium entropy production in terms of fractal measures and attractors.The theory is particularly useful for the description of many-particle systems with properties in-between conventional thermodynamics and nonlinear science, as they are frequently encountered on nanoscales.
Preface vii
*Introduction and outline
1(14)
Hamiltonian dynamical systems approach to nonequilibrium statistical mechanics
2(5)
Thermostated dynamical systems approach to nonequilibrium statistical mechanics
7(4)
The red thread through this book
11(4)
Part 1: Fractal transport coefficients
15(148)
*Deterministic diffusion
17(12)
A simple model for deterministic diffusion
17(5)
A parameter-dependent fractal diffusion coefficient
22(6)
Summary
28(1)
Deterministic drift-diffusion
29(26)
Drift-diffusion model: mathematical definition
29(3)
+Calculating deterministic drift and diffusion coefficients
32(8)
Twisted eigenstate method
33(4)
Transition matrix methods
37(2)
Numerical comparison of the different methods
39(1)
The phase diagram
40(9)
Simple maps as deterministic ratchets
49(5)
*Summary
54(1)
Deterministic reaction-diffusion
55(28)
A reactive-diffusive multibaker map
55(7)
Deterministic models of reaction-diffusion
56(4)
The Frobenius-Perron operator
60(2)
Diffusive dynamics
62(8)
+Diffusive modes of the dyadic multibaker
62(2)
The parameter-dependent diffusion coefficient
64(6)
Reactive dynamics
70(11)
+Reactive modes of the dyadic multibaker
70(5)
The parameter-dependent reaction rate
75(6)
*Summary
81(2)
Deterministic diffusion and random perturbations
83(16)
Disordered dynamical systems
83(6)
Noisy dynamical systems
89(9)
*Summary
98(1)
From normal to anomalous diffusion
99(22)
Deterministic diffusion and bifurcations
99(8)
Anomalous diffusion in intermittent maps
107(12)
*Summary
119(2)
From diffusive maps to Hamiltonian particle billiards
121(16)
Correlated random walks in maps
121(7)
Correlated random walks in billiards
128(6)
*Summary
134(3)
Designing billiards with irregular transport coefficients
137(16)
Diffusion in the flower-shaped billiard
137(4)
+Random and correlated random walks
141(7)
Diffusion in porous solids
148(2)
*Summary
150(3)
Deterministic diffusion of granular particles
153(10)
Resonances and diffusion in the bouncing ball billiard
153(4)
+Diffusion by correlated random walks
157(3)
Vibratory conveyors
160(1)
*Summary
161(2)
Part 2: Thermostated dynamical systems
163(154)
Motivation: coupling a system to a thermal reservoir
165(20)
*Why thermostats?
165(2)
*Modeling thermal reservoirs: the Langevin equation
167(6)
Equilibrium velocity distributions for thermostated systems
173(6)
Applying thermostats: the periodic Lorentz gas
179(4)
*Summary
183(2)
*The Gaussian thermostat
185(20)
Construction of the Gaussian thermostat
185(4)
Chaos and transport in Gaussian thermostated systems
189(13)
Phase space contraction and entropy production
189(1)
Lyapunov exponents and transport coefficients
190(3)
Nonequilibrium fractal attractors
193(5)
Electrical conductivity
198(4)
Summary
202(3)
The Nose-Hoover thermostat
205(26)
The dissipative Liouville equation
205(3)
Construction of the Nose-Hoover thermostat
208(5)
Heuristic derivation
208(2)
Physics of this thermostat
210(3)
Properties of the Nose-Hoover thermostat
213(9)
Chaos and transport
213(2)
+Generalized Hamiltonian formalism
215(3)
Fractals and transport
218(4)
+Subtleties of Nose-Hoover dynamics
222(5)
Necessary conditions and generalizations
222(4)
Thermal reservoirs in nonequilibrium
226(1)
*Summary
227(4)
Universalities in Gaussian and Nose-Hoover dynamics?
231(26)
Non-Hamiltonian nonequilibrium steady states
231(4)
Phase space contraction and entropy production
235(5)
Transport coefficients and dynamical systems quantities
240(7)
Fractal attractors for nonequilibrium steady states
247(4)
Nonlinear response in the driven periodic Lorentz gas
251(2)
*Summary
253(4)
Gaussian and Nose-Hoover thermostats revisited
257(12)
Non-ideal Gaussian thermostat
257(4)
Non-ideal Nose-Hoover thermostat
261(3)
+Further alternative thermostats
264(2)
*Summary
266(3)
Stochastic and deterministic boundary thermostats
269(34)
Stochastic boundary thermostats
270(1)
Deterministic boundary thermostats
271(2)
+Boundary thermostats from first principles
273(6)
Deterministic boundary thermostats for the driven periodic Lorentz gas
279(8)
Phase space contraction and entropy production
280(3)
Attractors, bifurcations and conductivity
283(3)
Lyapunov exponents
286(1)
Hard disk fluid under shear and heat flow
287(13)
Homogeneously and inhomogeneously driven shear and heat flows
288(3)
Shear and heat flows thermostated by deterministic scattering
291(9)
*Summary
300(3)
Active Brownian particles and Nose-Hoover dynamics
303(14)
Brownian motion of migrating cells?
304(2)
+Moving biological entities as active Brownian particles
306(2)
+Bimodal velocity distributions and Nose-Hoover dynamics
308(6)
*Summary
314(3)
Part 3: Outlook and conclusions
317(64)
Further topics in chaotic transport theory
319(48)
Fluctuation relations
320(11)
Entropy fluctuation in nonequilibrium steady states
320(1)
The Gallavotti-Cohen fluctuation theorem
321(6)
The Evans-Searles fluctuation theorem
327(1)
Jarzynski work relation and Crooks relation
328(3)
Lyapunov modes
331(6)
Fourier's law
337(10)
The basic problem
338(2)
Heat conduction in anharmonic chaotic chains
340(4)
Heat conduction in chaotic particle billiards
344(3)
Pseudochaotic diffusion
347(17)
Microscopic chaos and diffusion?
348(4)
Polygonal billiard channels
352(12)
*Summary
364(3)
*Conclusions
367(14)
Microscopic chaos and nonequilibrium statistical mechanics: the big picture
367(4)
Assessment of the main results
371(5)
Existence of fractal transport coefficients
371(3)
Universalities in thermostated dynamical systems?
374(2)
Important open questions
376(5)
Fractal transport coefficients
377(2)
Thermostated dynamical systems
379(1)
Note added in proof
380(1)
Bibliography 381(54)
Index 435